Contents

1. Homework 1
2. Homework 2
3. Homework 3
4. Homework 4
5. Homework 5
6. Homework 6
HOMEWORK 1

Problem 1. Determine all subrings of \(\mathbb{Z} \).

Problem 2. Determine all subrings of \(\mathbb{Z} \times \mathbb{Z} \).

Problem 3. Determine all ideals of \(\mathbb{Z} \times \cdots \times \mathbb{Z} \) (\(n \) times).

Problem 4. Give an example of a commutative ring \(R \) and two distinct ideals \(I \) and \(J \) of \(R \) such that \(I \cap J \neq IJ \).

Problem 5. Determine all finite rings of 2 and 3 elements.

Problem 6. Let \(R \) be a commutative ring and \(r \in R \). Prove there is a unique ring homomorphism \(f : \mathbb{Z}[x] \to R \) such that \(f(x) = r \). Show that the image of \(f \) is the smallest subring of \(R \) that contains \(r \).

Problem 7. Let \(R \) be an integral domain such that \(R[x] \) is a principal ideal domain. Prove that \(R \) is a field.

Problem 8. Prove that for every non-zero commutative ring \(R \), the ring \(R[x] \) has infinitely many prime ideals.

Problem 9. Let \(B \subset A \) be a subgroup of an abelian group \(A \). Prove that the set

\[
I = \{ f \in \text{End} A \mid f(A) \subset B \}
\]

is a right ideal in the ring \(\text{End} A \).

Problem 10. The Jacobson radical \(\text{rad} R \) (or \(J(R) \)) of a commutative ring \(R \) is the intersection of all maximal ideals of \(R \). Show that \(x \in \text{rad} R \) if and only if \(1 - xy \in R^\times \) for all \(y \in R \).
HOMEWORK 2

Problem 1. Let f be a polynomial over a commutative ring R. Prove that if $f \in \text{rad}(R[x])$, then f is a nilpotent polynomial.

Problem 2. (a) Let $R = R_1 \times \cdots \times R_n$ be the product of rings. For every $i = 1, \ldots, n$, let $e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$, with 1 in the i-th position. Prove the following:

(i) $e_i^2 = e_i$ for all i;
(ii) $e_ie_j = 0$ for all $i \neq j$;
(iii) $1 = e_1 + \cdots + e_n$;
(iv) $e_i a = ae_i$ for all i and $a \in R$.

(b) Let R be a ring and $e_1, \ldots, e_n \in R$ satisfy (i)-(iv) as above. Prove that $R \cong R_1 \times \cdots \times R_n$ for some rings R_i so that e_i correspond to $(0, \ldots, 0, 1, 0, \ldots, 0)$ under the isomorphism.

Problem 3. Let e be an idempotent in a commutative ring R, i.e. $e^2 = e$. Prove that if R is a local ring, i.e. R has exactly one maximal ideal, then $e \in \{0, 1\}$.

Problem 4. Let R be a commutative ring such that every $a \in R$ is idempotent. Prove that every prime ideal in R is maximal.

Problem 5. Prove that every commutative non-zero ring has a minimal prime ideal.

Problem 6. Determine the spectrum of the subring $R \subset \mathbb{Q}$ of all fractions a/b with b odd.

Problem 7. Prove that for every two commutative rings R and S, the spectrum of the product $R \times S$ is bijective to the disjoint union of Spec R and Spec S.

Problem 8. Let R be a commutative ring and $I \subset R$ an ideal. Construct a bijection between Spec(R/I) and the subset of all prime ideals $P \in \text{Spec} R$ containing I.

Problem 9. Let p be a divisor of $4a^2 + 1$ for some integer a. Prove that $p \equiv 1 \pmod{4}$.

Problem 10. Let p be a prime integer with $p \equiv 1 \pmod{4}$. Prove that $p = a^2 + b^2$ for a unique (non-ordered) pair of positive integers (a, b).
HOMEWORK 3

Problem 1. Show that for every field F, the set $\text{Spec } F[x]$ is infinite.

Problem 2. Show that $\mathbb{Z}[\sqrt{2}]$ is a UFD.

Problem 3. Find an ideal of $\mathbb{Z}[\sqrt{-5}]$ that is not principal.

Problem 4. Prove that every non-zero prime ideal of a PID is maximal.

Problem 5. Let R be a commutative ring and $S \subset R$ be a multiplicative subset, meaning that $1 \in S$ and that S is closed under multiplication. Define a relation \sim on the set $R \times S$ by the condition that $(r_1, s_1) \sim (r_2, s_2)$ if and only if there is an element $s \in S$ such that $s(r_1s_2 - r_2s_1) = 0$.

(a) Prove that \sim is an equivalence relation. Write r/s for the equivalence class of (r, s) and $S^{-1}R$ for the set of equivalence classes.

(b) Prove that the binary operations

$$
\frac{r_1}{s_1} + \frac{r_2}{s_2} = \frac{r_1s_2 + r_2s_1}{s_1s_2} \quad \text{and} \quad \frac{r_1}{s_1} \cdot \frac{r_2}{s_2} = \frac{r_1r_2}{s_1s_2}
$$

are well-defined and make $S^{-1}R$ a commutative ring.

(c) Prove that the map $f : R \to S^{-1}R$ taking r to $r/1$ is a ring homomorphism.

Problem 6. Let R be a commutative ring and $S \subset R$ be a multiplicative subset. Let $g : R \to T$ be a homomorphism of commutative rings such that $g(S) \subset T^\times$. Prove that there is a unique ring homomorphism $h : S^{-1}R \to T$ such that $g = h \circ f$, where $f : R \to S^{-1}R$ is the homomorphism from Problem 5(c).

Problem 7. Prove that if R is a UFD and $0 \not\in S \subset R$ is a multiplicative subset, then $S^{-1}R$ is also a UFD.

Problem 8. Let R be an integral domain with quotient field F. Show that if T is an integral domain such that $R \subset T \subset F$, then the quotient field of T is isomorphic to F.

Problem 9. Prove that the ring $R = \mathbb{Z}[x_1, x_2, \ldots]$ is not noetherian.

Problem 10. Show that the ring $R = \mathbb{Z}[x_1, x_2, \ldots]$ is a UFD.
HOMEWORK 4

Problem 1. Give an example of a non-zero abelian group such that \(A \oplus A \cong A \).

Problem 2. Let \(A \) be a non-zero abelian group such that \(A \oplus A \cong A \) and let \(R = \text{End} A \). Prove that the free \(R \)-modules \(R^n \) and \(R^m \) are isomorphic for all \(n, m > 0 \).

Problem 3. Let \(S \) be a multiplicative subset of a commutative ring \(R \). For any \(R \)-module \(M \), define the localization \(S^{-1}M \) as a module over \(S^{-1}R \). (Hint: Consider an equivalence relation on \(S \times M \).) Show that the correspondence \(M \mapsto S^{-1}M \) extends to a functor \(R\text{-Mod} \to S^{-1}R\text{-Mod} \).

Problem 4. Let \(I \) be a (two-sided) ideal of a ring \(R \) and let \(M \) be a (left) \(R \)-module such that \(IM = 0 \). Show that \(M \) has a natural structure of a (left) \(R/I \)-module.

Problem 5. Let \(\{M_i\}_{i \in I} \) and \(\{N_j\}_{j \in J} \) be two families of (left) \(R \)-modules. Show that there is a natural isomorphism

\[
\text{Hom}_R \left(\bigoplus_{i \in I} M_i, \prod_{j \in J} N_j \right) \cong \prod_{i \in I, j \in J} \text{Hom}_R(M_i, N_j).
\]

Problem 6. Prove that a (left) \(R \)-module over a ring \(R \) with identity generated by one element is isomorphic to \(R/I \) for some (left) ideal \(I \) of \(R \).

Problem 7. Let \(F(A) = A_{\text{tors}} \) be the functor from the category of abelian groups to itself (here \(A_{\text{tors}} \) is the subgroup of elements of finite order in \(A \), i.e. torsion elements). Show that \(F \) is left exact.

Problem 8. Let

\[
\begin{array}{cccccc}
M_1 & \longrightarrow & M_2 & \longrightarrow & M_3 & \longrightarrow & M_4 & \longrightarrow & M_5 \\
\downarrow f_1 & & \downarrow f_2 & & \downarrow f_3 & & \downarrow f_4 & & \downarrow f_5 \\
N_1 & \longrightarrow & N_2 & \longrightarrow & N_3 & \longrightarrow & N_4 & \longrightarrow & N_5
\end{array}
\]

be a commutative diagram of (left) \(R \)-modules and \(R \)-homomorphisms with exact rows. Prove that

(a) if \(f_1 \) is surjective and \(f_2, f_4 \) are injective, then \(f_3 \) is injective;

(b) if \(f_5 \) is injective and \(f_2, f_4 \) are surjective, then \(f_3 \) is surjective.

Problem 9. Let \(M_i \) be a (left) \(R_i \)-module for \(i = 1, \ldots, n \). Show that \(M = M_1 \times \cdots \times M_n \) has a natural structure of a (left) module over the ring \(R = R_1 \times \cdots \times R_n \). Prove that any (left) \(R \)-module is isomorphic to \(M \) as above for some (left) \(R_i \)-modules \(M_i \).

Problem 10. Let \(R = \mathbb{Z}[x, y] \). Construct an exact sequence of \(R \)-modules

\[
0 \longrightarrow R \longrightarrow R \oplus R \longrightarrow R \longrightarrow \mathbb{Z} \longrightarrow 0,
\]

where \(f(g(x, y)) = g(0, 0) \). Here \(\mathbb{Z} \) is viewed as an \(R \)-module via \(x \cdot 1 = y \cdot 1 = 0 \).
HOMEWORK 5

Problem 1. (a) Let I be an ideal of a ring R. Show that for every left R-module M, the quotient group M/IM has a natural structure of a left R/I-module.

(b) Show that if B is a basis of a free R-module M, then the image of B in M/IM is a basis of M/IM as a R/I-module.

(c) Show that if there exists a surjective ring homomorphism from R to a field, then the rank of a free R-module is well-defined.

(d) Prove that every commutative ring R has the property in part (c).

Problem 2. Prove that if every module over a domain R is free, then R is a field.

Problem 3. Show that \mathbb{Q} is not a projective \mathbb{Z}-module.

Problem 4. Let a_1, \ldots, a_n be elements of a commutative ring R generating the ideal R. Show that the submodule M in R^n consisting of all n-tuples (x_1, \ldots, x_n) such that $a_1x_1 + \cdots + a_nx_n = 0$ is projective.

Problem 5. Prove that every $\mathbb{Z}/6\mathbb{Z}$-module is projective and injective. Find a $\mathbb{Z}/4\mathbb{Z}$-module that is neither projective nor injective.

Problem 6. Prove that the ideal $I = (2, 1 + \sqrt{-5})$ in $R = \mathbb{Z}[\sqrt{-5}]$ is a projective R-module. Is I a free R-module?

Problem 7. Let S be a multiplicative subset in a commutative ring R. Show that the localization functor $\text{R-Mod} \to S^{-1}\text{R-Mod}$ is exact.

Problem 8. Prove that if, for a module M over a commutative ring R, one has $M_m = 0$ for every maximal ideal $m \subset R$, then $M = 0$. (Here M_m is the localization of M with respect to the multiplicative subset $R \setminus \{p\}$.

Hint: Show that for every non-zero $m \in M$, there is a maximal ideal in R containing all of the elements $a \in R$ such that $am = 0$.

Problem 9. Determine the torsion part of the group \mathbb{Z}^2/N, where N is the cyclic subgroup of \mathbb{Z}^2 generated by $(6, 21)$.

Problem 10. Let $f : A \to A$ be an endomorphism of an abelian group A such that $f(f(a)) = -a$ for all $a \in A$. Show that there is a structure of a $\mathbb{Z}[i]$-module on A such that $ia = f(a)$ for all $a \in A$.

HOMEWORK 6

Problem 1. Show that a submodule of a cyclic module over a PID is cyclic.

Problem 2. Let a and b be non-zero elements of a PID R. Prove that $R/aR \oplus R/bR \cong R/cR \oplus R/dR$, where $c = \text{lcm}(a, b)$ and $d = \text{gcd}(a, b)$.

Problem 3. Find the invariant factors of \mathbb{Z}^3/N, where N is generated by $(-4, 4, 2), (16, -4, -8)$, and $(8, 4, 2)$.

Problem 4. Find the rational canonical form of the linear operator in \mathbb{R}^3 given by $\begin{pmatrix} -2 & 0 & 0 \\ -1 & -4 & -1 \\ 2 & 4 & 0 \end{pmatrix}$.

Problem 5. Find the Jordan canonical form of the linear operator in \mathbb{C}^2 given by $\begin{pmatrix} 1 & -1 \\ 1 & 3 \end{pmatrix}$.

Problem 6. Classify all finitely generated modules over $\mathbb{Z}/n\mathbb{Z}$.

Problem 7. Classify all finitely generated modules over $S^{-1}\mathbb{Z}$ for each of the cases $S = \{p^n \mid n \geq 0\}$ and $S = \mathbb{Z}/p\mathbb{Z}$. (Here p is a prime integer.)

Problem 8. Let N be a submodule of a finitely generated free module F over a PID R. Show that N is a direct summand of F if and only if $N \cap aF = aN$ for all $a \in R$.

Problem 9. Let A be a nilpotent $n \times n$ matrix. Show that the invariant factors of A are powers of x. Prove that $A^n = 0$.

Problem 10. Prove that an $n \times n$ matrix is similar to its transpose.