Fundamental Theorems of Calculus

<table>
<thead>
<tr>
<th>Interpretation</th>
<th>Integral of derivative across solid</th>
<th>Integral across boundary</th>
<th>Line integrals, C a path from P to Q</th>
<th>Green’s Theorem (Line integral)</th>
<th>Stokes Theorem (Line integral)</th>
<th>Green’s Theorem (Flux version)</th>
<th>Divergence Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>The change in the value of f between a and b is the sum of the instantaneous changes over the interval $[a, b]$.</td>
<td>$\int_a^b f'(x) , dx$</td>
<td>$\int_C \nabla f \cdot dr$</td>
<td>$\int_C (F \cdot dr)$</td>
<td>$\int_D \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} , dA$</td>
<td>$\int_{\partial D} F \cdot dr$</td>
<td>$\int_S \text{curl}(F) \cdot dS$</td>
<td>$\int_{\partial W} F \cdot dS$</td>
</tr>
<tr>
<td>The change in f from P to Q is the sum of the instantaneous changes over any path from P to Q.</td>
<td>$\int_C f , dr$</td>
<td>$\int_C F \cdot dr$</td>
<td>$\int_{\partial D} F \cdot dr$</td>
<td></td>
<td>$\int_S \text{curl}(F) \cdot dS$</td>
<td>$\int_{\partial W} \text{curl}(F) \cdot dS$</td>
<td></td>
</tr>
<tr>
<td>The work done by F along ∂D (the line integral) is the sum of the instantaneous spins over D, a region in the plane.</td>
<td>$\int_D \partial F_2 , dx - \partial F_1 , dy , dA$</td>
<td>$\int_D \text{curl}(F) \cdot dA$</td>
<td>$\int_S \text{curl}(F) \cdot dS$</td>
<td></td>
<td></td>
<td>$\int_{\partial W} \text{curl}(F) \cdot dS$</td>
<td></td>
</tr>
</tbody>
</table>

1 We can obtain a nice interpretation of the “sum of instantaneous spins over S” by noting that the right side of Stokes’ is the flux of curl(F) through S and recalling that curl(F) is perpendicular to the plane of rotation of F.

Some Applications of the Divergence Theorem

Recall that we can use Green’s Theorem in a clever way to compute the area of a region \(D \subset \mathbb{R}^2 \). Similarly, we can use the Divergence Theorem to compute the volume of a region \(W \subset \mathbb{R}^3 \), provided the boundary \(\partial W \) is smooth. To see this, let \(F(x,y,z) = (x,y,z) \). Then

\[
\int_{\partial W} F \cdot dS = \iiint_W \text{div}(F) dV = \iiint_W \left(\frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z) \right) dV = \iiint_W 3dV = 3 \iiint_W 1dV.
\]

Dividing both sides by 3, we see that

\[
\text{Vol}(W) = \frac{1}{3} \int_{\partial W} F \cdot dS.
\]

Example. (Section 18.3, Exercise 21) Use the above equation to compute the volume of the unit ball \(B = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1 \} \).

(Solution) We have \(F = (x,y,z) \) and

\[
\partial B = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1 \}.
\]

We can parametrize \(\partial B \) by

\[
G(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi),
\]

where \(0 \leq \theta \leq 2\pi \) and \(0 \leq \phi \leq \pi \). Then

\[
\frac{\partial G}{\partial \theta} = (-\sin \theta \sin \phi, \cos \theta \sin \phi, 0) \quad \text{and} \quad \frac{\partial G}{\partial \phi} = (\cos \theta \cos \phi, \sin \theta \cos \phi, -\sin \phi),
\]

so

\[
\mathbf{N}(\theta, \phi) = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-\sin \theta \sin \phi & \cos \theta \sin \phi & 0 \\
\cos \theta \cos \phi & \sin \theta \cos \phi & -\sin \phi
\end{vmatrix} = \left(-\cos \theta \sin^2 \phi, -\sin \theta \sin^2 \phi, -\sin^2 \theta \sin \phi \cos \phi - \cos^2 \theta \sin \phi \cos \phi \right) = \left(-\cos \theta \sin^2 \phi, -\sin \theta \sin^2 \phi, -\sin \phi \cos \phi \right).
\]

Notice that this normal vector points inward; to obtain an outward-pointing normal vector we let

\[
\mathbf{N}(\theta, \phi) = \left(\cos \theta \sin^2 \phi, \sin \theta \sin^2 \phi, \sin \phi \cos \phi \right).
\]

Then we compute

\[
\text{Vol}(B) = \frac{1}{3} \int_{\partial B} F \cdot dS = \frac{1}{3} \int_0^\pi \int_0^{2\pi} \langle \cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi \rangle \cdot \mathbf{N}(\theta, \phi) d\theta d\phi
\]
\[
\begin{align*}
&= \frac{1}{3} \int_{0}^{\pi} \int_{0}^{2\pi} \left[(\cos \theta \sin \phi)(\cos \theta \sin^2 \phi) + (\sin \theta \sin \phi)(\sin \theta \sin^2 \phi) \\
&\quad + (\cos \phi)(\sin \phi \cos \phi) \right] d\theta d\phi \\
&= \frac{1}{3} \int_{0}^{\pi} \int_{0}^{2\pi} \left[\cos^2 \theta \sin^3 \phi + \cos^2 \theta \sin^3 \phi + \sin \phi \cos^2 \phi \right] d\theta d\phi \\
&= \frac{1}{3} \int_{0}^{\pi} \int_{0}^{2\pi} \left[\sin^3 \phi + \sin \phi \cos^2 \phi \right] d\theta d\phi \\
&= \frac{1}{3} \int_{0}^{\pi} \int_{0}^{2\pi} \sin \phi (\sin^2 \phi + \cos^2 \phi) d\theta d\phi \\
&= \frac{1}{3} \int_{0}^{\pi} \int_{0}^{2\pi} \sin \phi d\theta d\phi = \frac{2\pi}{3} \int_{0}^{\pi} \sin \phi d\phi = \frac{2\pi}{3} [\cos \phi]_{0}^{\pi} = \frac{2\pi}{3} (1 - (-1)) = \frac{4\pi}{3}.
\end{align*}
\]

Thankfully, this agrees with the known volume of \(B \). \(\diamondsuit \)

Example. (Chapter 18 Review, Exercise 33) The velocity vector field of a fluid (in meters per second) is

\[
\mathbf{F}(x, y, z) = \langle x^2 + y^2, 0, z^2 \rangle.
\]

Let \(W \) be the region between the hemisphere

\[
S = \{ (x, y, z) : x^2 + y^2 + z^2 = 1, \ z \geq 0 \}
\]

and the disk \(D = \{ (x, y, 0) : x^2 + y^2 \leq 1 \} \) in the \(xy \)-plane. (Notice that our \(S \) is different from what’s written in the textbook; the book has a typo.)

(a) Show that the flow rate across \(D \) is zero.

(b) Use the Divergence Theorem to compute the flow rate across \(S \), oriented with outward-pointing normal.

(Solution)

(a) Note that we weren’t given an orientation for the normal vector to \(D \), but that orientation shouldn’t matter since the flow rate is supposed to be zero. We’ll see that it really doesn’t matter. We can parametrize \(D \) by

\[
G(r, \theta) = (r \cos \theta, r \sin \theta, 0),
\]

where \(0 \leq r \leq 1 \) and \(0 \leq \theta \leq 2\pi \). Then

\[
\frac{\partial G}{\partial r} \times \frac{\partial G}{\partial \theta} = \begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\cos \theta & \sin \theta & 0 \\
-r \sin \theta & r \cos \theta & 0
\end{vmatrix} = \langle 0, 0, r \rangle,
\]

so \(\mathbf{N}(r, \theta) = \langle 0, 0, \pm r \rangle \), with the sign of the last component depending on the orientation of \(D \). But

\[
\mathbf{F}(G(r, \theta)) = \langle r^2 \cos^2 \theta + r^2 \sin^2 \theta, 0, 0 \rangle = \langle r^2, 0, 0 \rangle,
\]

so

\[
\text{flow rate} = \iint_{D} \mathbf{F} \cdot d\mathbf{S} = \int_{0}^{2\pi} \int_{0}^{1} \langle r^2, 0, 0 \rangle \cdot \langle 0, 0, \pm r \rangle dr d\theta = 0.
\]
We see that the sign of r in $N(r, \theta)$ does not matter. Altogether, our computation says that the net flow through the unit disk D is zero; this does not mean that there is no flow through S. It’s useful to note that most of the work we did here was unnecessary. At any point $(x, y, 0) \in D$, $F(x, y, 0) = (x^2 + y^2, 0, 0)$. This vector is tangent to D and is thus contributing nothing to the flux through D. Concretely, $F \cdot n = 0$, so
\[
\int_D F \cdot dS = \int_D F \cdot ndS = 0.
\]

(b) If we orient ∂W with an outward-pointing normal vector, then
\[
\partial W = S \cup D,
\]
where S has an outward-pointing normal and D has a downward-pointing normal. Then for any vector field F (not just the F we care about here),
\[
\int_{\partial W} F \cdot dS = \int_S F \cdot dS + \int_D F \cdot dS.
\]
This equation holds for our particular F and in words says “the flow rate of F out of W equals the flow rate of F across S plus the flow rate of F across D.” Since we’ve already computed the latter value to be zero, this means
\[
\int_S F \cdot dS = \int_{\partial W} F \cdot dS.
\]
According to the Divergence Theorem this becomes
\[
\int_S F \cdot dS = \int_{\partial W} F \cdot dS = \iiint_W \text{div}(F)dV.
\]
Then we have
\[
\int_S F \cdot dS = \iiint_W (2x + 0 + 2z) dV
= \int_0^{\pi/2} \int_0^{2\pi} \int_0^1 (2\rho \cos \theta \sin \phi + 2\rho \cos \phi)\rho^2 \sin \phi \, d\rho d\theta d\phi
= 2 \int_0^{\pi/2} \int_0^{2\pi} \int_0^1 \rho^3 (\cos \theta \sin^2 \phi + \cos \phi \sin \phi) \, d\rho d\theta d\phi
= \frac{2}{4} \int_0^{\pi/2} \int_0^{2\pi} (\cos \theta \sin^3 \phi + \cos \phi \sin \phi) \, d\theta d\phi
= \frac{2\pi}{2} \int_0^{\pi/2} \cos \phi \sin \phi d\phi = \pi \int_0^1 u du = \frac{\pi}{2}.
\]
So the flow rate out of W is $\frac{\pi^2}{4}$, and all of this flow is occurring through S.

\[\diamondsuit\]