WEEK 9 WORKSHEET

(1) The critical points of a function f are the points (a, b) where $\nabla f(a, b) = 0$. A critical point is called degenerate if

$$\det \begin{bmatrix} f_{xx}(a, b) & f_{xy}(a, b) \\ f_{yx}(a, b) & f_{yy}(a, b) \end{bmatrix} = 0.$$

Find all critical points of $f(x, y) = 6xy^2 - 2x^3 - 3y^4$ and identify the ones which are degenerate.

(2) Consider the function $f(x, y) = x^2 + 4y^2 - 4xy + 2$.

(a) Show that $f(x, y)$ has an infinite number of critical points.

(b) Show that all of the critical points are degenerate.

(c) Verify that $f(a, b) = 2$ for every critical point (a, b). Use this to show that f has an absolute minimum at each critical point. Hint: factor $x^2 - 4xy + 4y^2$.

(3) Consider $f(x, y) = 2 \cos x - y^2 + e^{xy}$.

(a) Verify that $(0, 0)$ is a critical point for f.

(b) Calculate each of f_{xx}, f_{xy}, f_{yy} at $(0, 0)$. The second-order Taylor polynomial at $(0, 0)$ is given by

$$T_2(x, y) = f(0, 0) + f_x(0, 0)x + f_y(0, 0)y + \frac{1}{2} f_{xx}(0, 0)x^2 + f_{xy}(0, 0)xy + \frac{1}{2} f_{yy}(0, 0)y^2.$$

What is $T_2(x, y)$ for our function $f(x, y)$ at $(0, 0)$?

(4) Let $g(x, y) = T_2(x, y)$ that you computed in 3(b). Since g is much simpler than f, we will use it to determine whether f has a minimum, a maximum, or a saddle point at $(0, 0)$.

(a) Determine the behavior of g along the line $y = mx$; that is, replace y by mx so that $g(x, mx)$ is a single variable function. Now use what you know from calc I to find out what g looks like for each value of m.

(b) Use your answer from (a) to make a guess about the behavior of f at $(0, 0)$.

(5) Consider alternate coordinates (u, v) on \mathbb{R}^2 given by $(x, y) = (u - v, u + v)$.

(a) Express the function g from problem 4 as a function of u and v, and expand and simplify the resulting expression.

(b) Explain why your answer in 5(a) confirms your guess in 4(b).

(c) Sketch a contour map for g (in terms of u and v) near $(0, 0)$. What does this tell you about the contour map of f near $(0, 0)$?

(It turns out that there is always a similar change of coordinates so that the Taylor series of a function f which has a critical point at $(0, 0)$ looks like $f(u, v) \approx f(0, 0) + au^2 + bv^2$. In fact this is why the 2nd derivative test works.)
(6) For functions of one variable it is impossible for a continuous function to have two local maxima and no local minimum (why is that?). However, for functions of two variables such functions exist. Find the critical points for
\[f(x, y) = -(x^2 - 1)^2 - (x^2 y - x - 1)^2 \]
and show that \(f \) has a local maximum at each point.

(7) Three alleles (alternative versions of a gene) A, B, and O determine the four blood types A (AA or AO), B (BB or BO), O (OO) and AB. The Hardy-Weinberg Law states that the proportion of individuals in a population who carry two different alleles is

\[P = 2pq + 2pr + 2rq \]

where \(p, q, r \) are, respectively, the proportions of A, B, and O in the population.

(a) Explain why \(p + q + r = 1 \).
(b) Show that \(P \) is at most \(\frac{2}{3} \).

 Hint: first use that \(p + q + r = 1 \) to turn \(P \) into a function of two variables.

(8) Find the maximum volume of the largest box with one corner at the origin and the opposite corner at a point \(P = (x, y, z) \) on the paraboloid

\[z = 1 - \frac{x^2}{4} - \frac{y^2}{9} \]

with \(x, y, z \geq 0 \).