DISCUSSION 10

1. Consider the functions \(f(x, y) = xy \) and \(g(x, y) = \frac{x^2}{36} + \frac{y^2}{9} \). Here’s a plot with a few level curves of \(f \) (in blue) and the level curve \(g(x, y) = 1 \) (in red):

Our goal is to identify the point on the red curve where \(f \) is largest (subject to the conditions \(x \geq 0, y \geq 0 \)).

(a) At each of the three marked points, draw a vector pointing in the direction of \(\nabla f \).
(b) At each of the green points, determine the direction we should move along the red curve in order to increase the value of \(f \).
(c) At the blue point, what can you say about the tangent line to the red curve and the vector \(\nabla f \)? What does this allow you to conclude about \(\nabla g \) and \(\nabla f \)?
(d) Identify the coordinates of the blue point.

2. Consider an isosceles triangle inscribed in the ellipse \(\left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1 \), with one vertex at the point \((0, b)\):

Find the maximum area of such a triangle. (Only the top vertex is fixed.)

3. A Cobb-Douglas utility function purports to measure the level of utility (however that might be measured) that a consumer derives from a combination of goods. Suppose that \(x \) units of product \(A \) and \(y \) units of product \(B \) give a particular consumer utility

\[
U(x, y) = 10x^{1/4}y^{3/4}.
\]

Also suppose that product \(A \) has a price of \$40, product \(B \) has a price of \$60, and our consumer has \$800 to spend on these products. How should this budget be allocated between these products to maximize utility?
4. Consider the plane in \mathbb{R}^3 passing through the points $(3, 0, 0)$, $(0, 3, 0)$, and $(0, 0, 3)$, with $a, b, c \neq 0$. Find the point on this plane which is nearest the origin.

5. Find the volume of the largest rectangular parallelepiped, with edges parallel to the axes, inscribed in the ellipsoid

$$\frac{x^2}{4} + \frac{y^2}{16} + \frac{z^2}{16} = 1.$$