The Evolute

Before providing a solution to the challenge problem, we want to give an explicit parametrization for the evolute of a regular curve whose signed curvature never vanishes.

If \(\tilde{\gamma}: (\tilde{\alpha}, \tilde{\beta}) \to \mathbb{R}^2 \) is a unit-speed curve whose signed curvature \(\tilde{k}(s) \) is never zero, then the evolute of \(\tilde{\gamma} \) is defined by

\[
\tilde{\epsilon}(t) := \tilde{\gamma}(t) + \tilde{R}(t)\hat{n}(t), \quad \text{for all } t \in (\tilde{\alpha}, \tilde{\beta}),
\]

where \(\tilde{R}(t) = 1/\tilde{k}(t) \) is the signed radius of curvature of \(\tilde{\gamma} \), and \(\hat{n}(t) \) is the standard unit normal vector. If \(\gamma: (\alpha, \beta) \to \mathbb{R}^2 \) is regular (but not necessarily unit-speed), we can define its evolute to be the evolute of a unit-speed reparametrization of \(\gamma \). Suppose \(\tilde{\gamma}(s) = \gamma(\phi(s)), s \in (\tilde{\alpha}, \tilde{\beta}) \), is a unit-speed reparametrization of \(\gamma \). The unit normal vectors of \(\gamma \) and \(\tilde{\gamma} \) are clearly related by

\[
\hat{n}(t) = \tilde{\hat{n}}(\phi^{-1}(t)),
\]

and we have previously seen a similar relation for their signed curvatures:

\[
k(t) = \tilde{k}(\phi^{-1}(t)).
\]

This of course means that the signed radius of curvature \(R(t) \) of \(\gamma \) is given by

\[
\tilde{R}(\phi^{-1}(t)) = R(t)\hat{n}(t),
\]

which is a reparametrization of the evolute \(\tilde{\epsilon} \) of \(\tilde{\gamma} \). That is,

\[
\epsilon(t) := \gamma(t) + R(t)\hat{n}(t), \quad \text{for all } t \in (\alpha, \beta)
\]

(1)

gives a parametrization for the evolute of \(\gamma: (\alpha, \beta) \to \mathbb{R}^2 \), provided \(\gamma \) is a regular curve whose signed curvature \(k(t) \) never vanishes. In particular, \(\gamma \) need not be unit-speed for (1) to hold.

Equation (1) will be useful in parametrizing the evolute of a regular curve \(\gamma(t) \); by taking advantage of the equation

\[
\frac{d}{dt}\hat{\epsilon}(t) = k(t)\|\tilde{\gamma}(t)\|\tilde{n}(t)
\]

(2)

that defines signed curvature, we can give an even more explicit formula. In particular, we can take the inner product of each side of (2) with the vector \(\hat{n}(t) \) to obtain

\[
\langle \hat{\epsilon}(t), \hat{n}(t) \rangle = k(t)\|\tilde{\gamma}(t)\|\langle \hat{n}(t), \hat{n}(t) \rangle = k(t)\|\tilde{\gamma}(t)\|.
\]

The last equality above uses the fact that \(\hat{n}(t) \) is a unit-length vector. Because \(\gamma \) is assumed to be regular, \(\|\tilde{\gamma}(t)\| \) is never zero, so we have

\[
k(t) = \frac{\langle \hat{\epsilon}, \hat{n}(t) \rangle}{\|\tilde{\gamma}(t)\|},
\]
and thus
\[R(t) = \frac{\|\dot{\gamma}(t)\|}{\langle \dot{t}(t), \dot{n}(t) \rangle}. \]

We can unpack the expression \(\langle \dot{t}, \dot{n}(t) \rangle \) a bit. In particular, differentiating the equation \(\dot{t}(t) = \frac{\dot{\gamma}(t)}{\|\dot{\gamma}(t)\|} \) gives
\[\dot{t}(t) = \frac{d}{dt} \left(\frac{1}{\|\dot{\gamma}(t)\|} \right) \dot{\gamma}(t) = \frac{1}{\|\dot{\gamma}(t)\|^2} \gamma(t) \dot{\gamma}(t). \]

Because \(\dot{n}(t) \) is perpendicular to \(\dot{\gamma}(t) \), the first term on the right will not contribute to our inner product, and we find that
\[\langle \dot{t}(t), \dot{n}(t) \rangle = \frac{1}{\|\dot{\gamma}(t)\|} \langle \dot{\gamma}(t), \dot{n}(t) \rangle. \]

So in fact we have
\[R(t) = \frac{\|\dot{\gamma}(t)\|^2}{\langle \dot{\gamma}(t), \dot{n}(t) \rangle}. \]

(3)

Before moving on to the problem, we’ll derive one more equation. Let’s write \(\gamma \) as \(\gamma(t) = (x(t), y(t)) \) for some smooth functions \(x, y : (\alpha, \beta) \to \mathbb{R} \). We immediately have the unit tangent vector, and thus unit normal vector, for \(\gamma \):
\[\dot{t}(t) = \frac{1}{\sqrt{x'(t)^2 + y'(t)^2}} (\dot{x}(t), \dot{y}(t)) \quad \text{and} \quad \dot{n}(t) = \frac{1}{\sqrt{x'(t)^2 + y'(t)^2}} (-\dot{y}(t), \dot{x}(t)). \]

We can then compute the denominator we see in (3):
\[\langle \dot{\gamma}(t), \dot{n}(t) \rangle = \frac{1}{\sqrt{x'(t)^2 + y'(t)^2}} (\dot{x}(t)\dot{y}(t) - \dot{y}(t)\dot{x}(t)). \]

Because \(\|\dot{\gamma}(t)\|^2 = \dot{x}(t)^2 + \dot{y}(t)^2 \), we then have
\[R(t) = \frac{(\dot{x}(t)^2 + \dot{y}(t)^2)^{3/2}}{x(t)\dot{y}(t) - \dot{y}(t)x(t)}. \]

(4)

Finally, the parametrization given by (1) becomes
\[\epsilon(t) = (x(t), y(t)) + \frac{\dot{x}(t)^2 + \dot{y}(t)^2}{x(t)\dot{y}(t) - \dot{y}(t)x(t)} (\dot{y}(t), \dot{x}(t)), \]

(5)

for all \(t \in (\alpha, \beta) \).

The Problem

Let \(\gamma : (\alpha, \beta) \to \mathbb{R}^2 \) be a unit-speed parametrized curve whose signed curvature \(k(t) \) is negative for all \(t \), and let \(\epsilon(t) \) be the signed curvature of \(\gamma \), defined as in (1). Assume that \(\dot{k}(t) > 0 \) for all \(t \).

(a) Prove that the arc-length function \(s_\epsilon(t) \) of \(\epsilon \) is given by \(s_\epsilon(t) = -R(t) + C \) for some constant \(C \).

(b) Prove that the signed curvature \(k_\epsilon(t) \) of \(\epsilon \) is given by \(k_\epsilon(t) = \frac{-1}{R(t)R(t)} \).
(c) For \(t \in (\alpha, \beta) \), let \(N_t \) be the line in \(\mathbb{R}^2 \) in the direction of \(\hat{n}(t) \) containing \(\gamma(t) \). Prove that for all \(t \), the tangent vector \(\hat{t}_t(t) \) is rooted at a point of \(N_t \) and points in the direction of \(N_t \).

(d) Let \(\gamma : (0, \pi) \to \mathbb{R}^2 \) be defined by
\[
\gamma(t) = a(t - \sin(t), 1 - \cos(t)),
\]
where \(a > 0 \) is constant\(^1\). Prove that the evolute of \(\gamma \) is
\[
\epsilon(t) = a(t + \sin(t), -1 + \cos(t)).
\]

(e) Prove that \(\gamma \) is a translation of a reparametrization of \(\epsilon \).

(Solution) (a) Because \(\gamma \) is unit-speed we can show that its signed curvature satisfies
\[
\hat{n}(t) = -k(t)\gamma(t).
\]
(This is Exercise 2.2.1 of the book.) From this we see that
\[
\dot{\epsilon}(t) = \dot{\gamma}(t) + \dot{R}(t)\hat{n}(t) + R(t)\dot{\hat{n}}(t) = (1 - R(t)k(t))\dot{\gamma}(t) + \dot{R}(t)\hat{n}(t) = \dot{R}(t)\hat{n}(t).
\]
So \(\|\dot{\epsilon}(t)\| = |\dot{R}(t)||\hat{n}(t)| = |\dot{R}(t)| \). Now \(\dot{R}(t) = -k(t)/k(t)^2 \), so \(\dot{R}(t) < 0 \), since \(k(t) > 0 \). So \(|\dot{R}(t)| = -\dot{R}(t) \), and then
\[
s_\epsilon(t) = \int_{t_0}^t \|\dot{\epsilon}(u)\|\,du = \int_{t_0}^t -\dot{R}(u)\,du = -R(t) + C
\]
for some constant \(C \), as desired.

(b) Let \(\hat{t}_t(t) \) and \(\hat{n}_t(t) \) be the unit tangent and unit normal vectors for \(\epsilon(t) \), respectively. Because \(\epsilon(t) = \dot{R}(t)\hat{n}(t) \) we have
\[
\hat{t}_t(t) = \frac{\dot{\epsilon}(t)}{\|\dot{\epsilon}(t)\|} = \frac{\dot{R}(t)}{|\dot{R}(t)|}\hat{n}(t) = -\hat{n}(t).
\]
Then, writing \(J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \),
\[
\hat{n}_t(t) = J\hat{t}_t(t) = -J\hat{n}(t) = -J(J\hat{t}(t)) = -J^2\hat{t}(t) = \hat{t}(t),
\]
because \(J^2 = -I \). Now because the inner product \(\langle \hat{t}(t), \hat{n}(t) \rangle \) is identically zero, we have
\[
0 = \frac{d}{dt}(\langle \hat{t}(t), \hat{n}(t) \rangle) = \langle \dot{\hat{t}}(t), \hat{n}(t) \rangle + \langle \hat{t}(t), \dot{\hat{n}}(t) \rangle.
\]
Combining this with the fact that \(\gamma \) is unit-speed, we see that the signed curvature of \(\gamma \) is given by
\[
k(t) = \frac{\langle \dot{\hat{t}}(t), \hat{n}(t) \rangle}{\|\dot{\gamma}(t)\|} = -\langle \dot{\hat{t}}(t), \hat{n}(t) \rangle.
\]
Now the signed curvature of \(\epsilon \) is given by
\[
k_\epsilon(t) = \frac{\langle \dot{\hat{t}}_t(t), \hat{n}_t(t) \rangle}{\|\dot{\epsilon}(t)\|} = \frac{\langle \dot{\hat{t}}(t), \hat{n}(t) \rangle}{-\dot{R}(t)} = \frac{k(t)}{-\dot{R}(t)} = \frac{-1}{R(t)\dot{R}(t)},
\]
as we had hoped.

\(^1\)Note that \(\gamma \) is not unit-speed.
(c) Points on the line N_t have the form $\gamma(t) + s\hat{n}(t)$, since N_t passes through $\gamma(t)$ and is directed by $\hat{n}(t)$; certainly the point $\epsilon(t) = \gamma(t) + R(t)\hat{n}(t)$ is of this form. Moreover, because we showed that $\dot{\epsilon}(t) = -\hat{n}(t)$, the vector $\dot{\epsilon}(t)$ must point along N_t.

(d) We want to take advantage of equation (5). We have $x(t) = a(t - \sin t)$ and $y(t) = a(1 - \cos t)$, so

$$\dot{x}(t) = a(1 - \cos t), \quad \dot{y}(t) = a \sin t, \quad \ddot{x}(t) = a \sin t, \quad \ddot{y}(t) = a \cos t.$$

Notice that

$$\dot{x}(t)^2 + \dot{y}(t)^2 = a^2(1 - 2 \cos t + \cos^2 t) + a^2 \sin^2 t = a^2(2 - 2 \cos t),$$

and

$$\dot{x}(t)\ddot{y}(t) - \dot{y}(t)\ddot{x}(t) = a^2(\cos t - \cos^2 t) - a^2 \sin t = a^2(\cos t - 1).$$

So we have

$$\frac{\dot{x}(t)^2 + \dot{y}(t)^2}{\dot{x}(t)\ddot{y}(t) - \dot{y}(t)\ddot{x}(t)} = \frac{a^2(2 - 2 \cos t)}{a^2(\cos t - 1)} = -2.$$

According to (5) we then have

$$\epsilon(t) = (x(t), y(t)) - 2(\dot{y}(t), \dot{x}(t))$$

$$= a(t - \sin t, 1 - \cos t) - 2a(-\sin t, 1 - \cos t)$$

$$= a(t - \sin t + 2 \sin t, 1 + \cos t - 2(1 - \cos t))$$

$$= a(t + \sin t, -1 + \cos t),$$

just as expected.

(e) Notice that we have

$$\epsilon(t - \pi) = a((t - \pi) + \sin(t - \pi), -1 + \cos(t - \pi))$$

$$= a(t - \sin(t - \pi), -1 - \cos(t))$$

$$= a(t - \sin(t), 1 - \cos(t)) - a(\pi, 2)$$

$$= \gamma(t) - a(\pi, 2).$$

So $\gamma(t) = \epsilon(t - \pi) + a(\pi, 2)$, and we see that γ is a translation of a reparametrization of ϵ.

\[\Diamond\]