4 Images, Kernels, and Subspaces

In our study of linear transformations we’ve examined some of the conditions under which a transformation is invertible. Now we’re ready to investigate some ideas similar to invertibility. Namely, we would like to measure the ways in which a transformation that is not invertible fails to have an inverse.

4.1 The Image and Kernel of a Linear Transformation

Definition. The image of a function consists of all the values the function assumes. If \(f : X \rightarrow Y \) is a function from \(X \) to \(Y \), then
\[
\text{im}(f) = \{ f(x) : x \in X \}.
\]
Notice that \(\text{im}(f) \) is a subset of \(Y \).

Definition. The kernel of a function whose range is \(\mathbb{R}^n \) consists of all the values in its domain at which the function assumes the value 0. If \(f : X \rightarrow \mathbb{R}^n \) is a function from \(X \) to \(\mathbb{R}^n \), then
\[
\text{ker}(f) = \{ x \in X : f(x) = 0 \}.
\]
Notice that \(\text{ker}(f) \) is a subset of \(X \). Also, if \(T(x) = Ax \) is a linear transformation from \(\mathbb{R}^m \) to \(\mathbb{R}^n \), then \(\text{ker}(T) \) (also denoted \(\text{ker}(A) \)) is the set of solutions to the equation \(Ax = 0 \).

The kernel gives us some new ways to characterize invertible matrices.

Theorem 1. Let \(A \) be an \(n \times n \) matrix. Then the following statements are equivalent.

1. \(A \) is invertible.
2. The linear system \(Ax = b \) has a unique solution \(x \) for every \(b \in \mathbb{R}^n \).
3. \(\text{rref}(A) = I_n \).
4. \(\text{rank}(A) = n \).
5. \(\text{im}(A) = \mathbb{R}^n \).
6. \(\text{ker}(A) = \{ 0 \} \).

Example 13. (§3.1, Exercise 39 of [1]) Consider an \(n \times p \) matrix \(A \) and a \(p \times m \) matrix \(B \).

(a) What is the relationship between \(\text{ker}(AB) \) and \(\text{ker}(B) \)? Are they always equal? Is one of them always contained in the other?

(b) What is the relationship between \(\text{im}(A) \) and \(\text{im}(AB) \)?

(Solution)
(a) Recall that ker(AB) is the set of vectors \(x \in \mathbb{R}^m \) for which \(ABx = 0 \), and similarly that ker(B) is the set of vectors \(x \in \mathbb{R}^m \) for which \(Bx = 0 \). Now if \(x \) is in ker(B), then \(Bx = 0 \), so \(ABx = 0 \). This means that \(x \) is in ker(AB), so we see that ker(B) must always be contained in ker(AB). On the other hand, ker(AB) might not be a subset of ker(B). For instance, suppose that

\[
A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} .
\]

Then \(B \) is the identity matrix, so ker(B) = \{0\}. But every vector has image zero under \(AB \), so ker(AB) = \(\mathbb{R}^2 \). Certainly ker(B) does not contain ker(AB) in this case.

(b) Suppose \(y \) is in the image of \(AB \). Then \(y = ABx \) for some \(x \in \mathbb{R}^m \). That is,

\[
y = ABx = A(Bx),
\]

so \(y \) is the image of \(Bx \) under multiplication by \(A \), and is thus in the image of \(A \). So im(\(A \)) contains im(AB). On the other hand, consider

\[
A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} .
\]

Then

\[
AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} ,
\]

so im(AB) = \{0\}, but the image of \(A \) is the span of the vector \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \). So im(AB) does not necessarily contain im(A).

\[\Box\]

Example 14. (§3.1, Exercise 48 of [1]) Consider a 2 × 2 matrix \(A \) with \(A^2 = A \).

(a) If \(w \) is in the image of \(A \), what is the relationship between \(w \) and \(Aw \)?

(b) What can you say about \(A \) if rank(\(A \)) = 2? What if rank(\(A \)) = 0?

(c) If rank(\(A \)) = 1, show that the linear transformation \(T(x) = Ax \) is the projection onto im(\(A \)) along ker(\(A \)).

(Solution)

(a) If \(w \) is in the image of \(A \), then \(w = Av \) for some \(v \in \mathbb{R}^2 \). Then

\[
Aw = A(Av) = A^2v = Av = w,
\]

since \(A^2 = A \). So \(Aw = w \).
(b) If \(\text{rank}(A) = 2 \), then \(A \) is invertible. Since \(A^2 = A \), we see that

\[
A = I_2A = (A^{-1}A)A = A^{-1}A^2 = A^{-1}A = I_2.
\]

So the only rank 2 \(2 \times 2 \) matrix with the property that \(A^2 = A \) is the identity matrix. On the other hand, if \(\text{rank}(A) = 0 \) then \(A \) must be the zero matrix.

(c) If \(\text{rank}(A) = 1 \), then \(A \) is not invertible, so \(\ker(A) \neq \{0\} \). But we also know that \(A \) is not the zero matrix, so \(\ker(A) \neq \mathbb{R}^2 \). We conclude that \(\ker(A) \) must be a line in \(\mathbb{R}^2 \). Next, suppose we have \(w \in \ker(A) \cap \text{im}(A) \). Then \(Aw = 0 \) and, according to part (a), \(A^2 = w \). So \(w \) is the zero vector, meaning that \(\ker(A) \cap \text{im}(A) = \{0\} \). Since \(\text{im}(A) \) is neither 0 nor all of \(\mathbb{R}^2 \), it also must be a line in \(\mathbb{R}^2 \). So \(\ker(A) \) and \(\text{im}(A) \) are non-parallel lines in \(\mathbb{R}^2 \). Now choose \(x \in \mathbb{R}^2 \) and let \(w = x - Ax \). Notice that \(Aw = Ax - A^2x = 0 \), so \(w \in \ker(A) \). Then we may write \(x \) as the sum of an element of \(\text{im}(A) \) and an element of \(\ker(A) \):

\[
x = Ax + w.
\]

According to Exercise 2.2.33, the map \(T(x) = Ax \) is then the projection onto \(\text{im}(A) \) along \(\ker(A) \).

\[\Box\]

Example 15. (§3.1, Exercise 50 of [1]) Consider a square matrix \(A \) with \(\ker(A^2) = \ker(A^3) \). Is \(\ker(A^3) = \ker(A^4) \)? Justify your answer.

(Solution) Suppose \(x \in \ker(A^3) \). Then \(A^3x = 0 \), so

\[
A^4x = A(A^3x) = A0 = 0,
\]

meaning that \(x \in \ker(A^4) \). So \(\ker(A^3) \) is contained in \(\ker(A^4) \). On the other hand, suppose \(x \in \ker(A^4) \). Then \(A^4x = 0 \), so \(A^3(Ax) = 0 \). This means that \(Ax \) is in the kernel of \(A^3 \), and thus in \(\ker(A^2) \). So

\[
A^3x = A^2(Ax) = 0,
\]

meaning that \(x \in \ker(A^3) \). So \(\ker(A^4) \) is contained in \(\ker(A^3) \). Since each set contains the other, the two are equal: \(\ker(A^3) = \ker(A^4) \).

\[\Box\]

4.2 Subspaces

Definition. A subset \(W \) of the vector space \(\mathbb{R}^n \) is called a **subspace** of \(\mathbb{R}^n \) if it

(i) contains the zero vector;

(ii) is closed under vector addition;

(iii) is closed under scalar multiplication.
One important observation we can immediately make is that for any \(n \times m \) matrix \(A \), \(\ker(A) \) is a subspace of \(\mathbb{R}^m \) and \(\text{im}(A) \) is a subspace of \(\mathbb{R}^n \).

Definition. Suppose we have vectors \(v_1, \ldots, v_m \) in \(\mathbb{R}^n \). We say that a vector \(v_i \) is **redundant** if \(v_i \) is a linear combination of the preceding vectors \(v_1, \ldots, v_{i-1} \). We say that the set of vectors \(v_1, \ldots, v_m \) is **linearly independent** if none of them is redundant, and **linearly dependent** otherwise. If the vectors \(v_1, \ldots, v_m \) are linearly independent and span a subspace \(V \) of \(\mathbb{R}^n \), we say that \(v_1, \ldots, v_m \) form a **basis** of \(V \).

Example 16. (§3.2, Exercise 26 of [1]) Find a redundant column vector of the following matrix and write it as a linear combination of the preceding columns. Use this representation to write a nontrivial relation among the columns, and thus find a nonzero vector in the kernel of \(A \).

\[
A = \begin{bmatrix}
1 & 3 & 6 \\
1 & 2 & 5 \\
1 & 1 & 4
\end{bmatrix}.
\]

(Solution) First we notice that

\[
3 \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} + \begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix} = \begin{bmatrix}
6 \\
5 \\
4
\end{bmatrix},
\]

meaning that the third vector of \(A \) is redundant. This allows us to write a nontrivial relation among the vectors. Finally, these coefficients give us a nonzero element of \(\ker(A) \), since

\[
\begin{bmatrix}
1 & 3 & 6 \\
1 & 2 & 5 \\
1 & 1 & 4
\end{bmatrix} \begin{bmatrix}
3 \\
1 \\
-1
\end{bmatrix} = 3 \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} + 1 \begin{bmatrix}
3 \\
2 \\
1
\end{bmatrix} - 1 \begin{bmatrix}
6 \\
5 \\
4
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}.
\]

\[\Box\]

Example 17. (§3.2, Exercise 53 of [1]) Consider a subspace \(V \) of \(\mathbb{R}^n \). We define the **orthogonal complement** \(V^\perp \) of \(V \) as the set of those vectors \(w \) in \(\mathbb{R}^n \) that are perpendicular to all vectors in \(V \); that is, \(w \cdot v = 0 \), for all \(v \in V \). Show that \(V^\perp \) is a subspace of \(\mathbb{R}^n \).

(Solution) We have three properties to check: that \(V^\perp \) contains the zero vector, that it is closed under addition, and that it is closed under scalar multiplication. Certainly \(0 \cdot v = 0 \) for every \(v \in V \), so \(0 \in V^\perp \). Next, suppose we have vectors \(w_1 \) and \(w_2 \) in \(V^\perp \). Then

\[
(w_1 + w_2) \cdot v = w_1 \cdot v + w_2 \cdot v = 0 + 0,
\]
since \(w_1 \cdot v = 0 \) and \(w_2 \cdot v = 0 \). So \(w_1 + w_2 \) is in \(V^\perp \), meaning that \(V^\perp \) is closed under addition. Finally, suppose we have \(w \) in \(V^\perp \) and a scalar \(k \). Then

\[
(kw) \cdot v = k(w \cdot v) = 0,
\]

so \(kw \in V^\perp \). So \(V^\perp \) is closed under scalar addition, and is thus a subspace of \(\mathbb{R}^n \). \(\diamond \)

Example 18. (§3.2, Exercise 54 of [1]) Consider the line \(L \) spanned by

\[
\begin{bmatrix}
1 \\
2 \\
3
\end{bmatrix}
\]

in \(\mathbb{R}^3 \). Find a basis of \(L^\perp \). See Exercise 53.

(Solution) Suppose \(v \), with components \(v_1, v_2, \) and \(v_3 \), is in \(L^\perp \). Then

\[
0 = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = v_1 + 2v_2 + 3v_3.
\]

This is a linear equation in three variables. Its solution set has two free variables – \(v_2 \) and \(v_3 \) – and the remaining variable can be given in terms of these:

\[
v_1 = -2v_2 - 3v_3.
\]

Consider the vectors

\[
u_1 = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} \quad \text{and} \quad u_2 = \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}.
\]

We can check that \(u_1 \) and \(u_2 \) are both in \(L^\perp \), and since neither is a scalar multiple of the other, these two vectors are linearly independent. Finally, choose any vector

\[
v = \begin{bmatrix}
-2v_2 - 3v_3 \\
v_2 \\
v_3
\end{bmatrix}
\]

in \(L^\perp \) and notice that

\[
v_2u_1 + v_3u_2 = \begin{bmatrix} -2v_2 \\ v_2 \\ 0 \end{bmatrix} + \begin{bmatrix} -3v_3 \\ 0 \\ v_3 \end{bmatrix} = v.
\]

So the linearly independent vectors \(u_1 \) and \(u_2 \) span \(L^\perp \), meaning that they provide a basis for this space. \(\diamond \)
4.3 The Dimension of a Subspace

Definition. The dimension of a subspace V of \mathbb{R}^n is the number of vectors in a basis for V, and is denoted $\dim(V)$.

We now have a new (and better!) definition for the rank of a matrix which can be verified to match our previous definition.

Definition. For any matrix A, $\text{rank}(A) = \dim(\text{im}(A))$.

Example 19. (§3.3, Exercise 78 of [1]) An $n \times n$ matrix A is called nilpotent if $A^m = 0$ for some positive integer m. Consider a nilpotent $n \times n$ matrix A, and choose the smallest number m such that $A^m = 0$. Pick a vector v in \mathbb{R}^n such that $A^{m-1}v \neq 0$. Show that the vectors $v, Av, A^2v, \ldots, A^{m-1}v$ are linearly independent.

(Solution) Suppose we have coefficients $c_0, c_1, \ldots, c_{m-1}$ so that

$$c_0v + c_1Av + c_2A^2v + \cdots + c_{m-1}A^{m-1}v = 0. \quad (7)$$

Multiplying both sides of this equation by A^{m-1} gives

$$c_0A^{m-1}v + c_1A^m v + c_2AA^m v + \cdots + c_{m-1}A^{m-2}A^m v = 0,$$

meaning that $c_0A^{m-1}v = 0$. Since $A^{m-1}v \neq 0$, this means that $c_0 = 0$. So we may rewrite Equation 7 as

$$c_1Av + c_2A^2v + \cdots + c_{m-1}A^{m-1}v = 0.$$

We may then multiply both sides of this equation by A^{m-2} to obtain

$$c_1A^{m-1}v + c_2A^m v + c_3AA^m v + \cdots + c_{m-1}A^{m-3}A^m v = 0.$$

Similar to before, this simplifies to $c_1A^{m-1}v = 0$. This tells us that $c_1 = 0$, so Equation 7 simplifies again to

$$c_2A^2v + c_3A^3v + \cdots + c_{m-1}A^{m-1}v = 0.$$

We may carry on this argument to show that each coefficient c_i is zero. This means that the vectors $v, Av, A^2v, \ldots, A^{m-1}v$ admit only the trivial relation, and are thus linearly independent. ♦

Example 20. (§3.3, Exercise 79 of [1]) Consider a nilpotent $n \times n$ matrix A. Use the result demonstrated in Exercise 78 to show that $A^n = 0$.

(Solution) Let m be the smallest integer so that $A^m = 0$, as in Exercise 78. According to that exercise, we may choose v so that the vectors $v, Av, A^2v, \ldots, A^{m-1}v$ are linearly independent. We know that any collection of more than n vectors in \mathbb{R}^n is linearly dependent, so this collection may have at most n vectors. That is, $m \leq n$, so

$$A^n = A^{n-m}A^m = A^{n-m}0 = 0,$$

as desired. ♦
Example 21. (§3.3, Exercise 82 of [1]) If a 3×3 matrix A represents the projection onto a plane in \mathbb{R}^3, what is $\text{rank}(A)$?

(Solution) The rank of A is given by the dimension of $\text{im}(A)$. Because A represents the projection onto a plane, the plane onto which we’re projecting is precisely $\text{im}(A)$. That is, $\text{im}(A)$ has dimension 2, so $\text{rank}(A) = 2$.

\hfill\Box
References