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The Target Device:

• Creates and confines a quantum dot electrostatically
• Senses dot using a quantum wire.

Device
Structure
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Single particle Schroedinger Equation

V(x) = potential

ψ(x)

d ψ
2

d x 2(-h2 /2m) + V(x) ψ = E ψ

Single particle, 1 dimensional, time independent 

Schroedinger’s Equation

ψ* ψ = probability density for particle location

E      = energy of the particle



V(x,y,z) = 

X

3D

Trap electrons: vertically in quantum “wells”

transversely using gate potentials



Device Operation:

Side voltage applied

quantum wire

Multiple states in the lower well.
Confinement in 2 directions.

Side and dot voltage applied

quantum wire + quantum dot

Single state in the upper well.
Confinement in 3 directions

Multiple states in the lower well.
Confinement in 2 directions



Goal of the computational simulations:

To help those involved in building the
device make intelligent design decisions.

Design decisions?

How wide should the center dot gate be?

Should the side gates be wedges or strips?

How much δ doping should there be?

What is the impact of variations in the δ doping?

How thick should the wells be?

*
*

*



Modeling

Complete Physics

Schroedinger
 Poisson (SP)

Simplest model that provides useful answers.

Anderson
Caflisch

Perturbations of SP Gyure



2D 1D3D

Use Dimension reduction



Equations

- ∇ ⋅ ( (h2 / 2m ) ∇ ψ ) + (φ + U ) ψ = λ ψ

Coupled Poisson-Schroedinger equations

∇ ⋅ (ε ∇ φ ) = Σ δsources + Σ G(λk, ψk) φ : potential

ψ : wave functions

• (I) Eigenvalue/Eigenvector problem 

• (II) Solution of Poisson’s equation

Computational tasks: 

• (III) Self consistent solution 



Discrete Equations

φ  , ψ  : vectors of values at  nodes of
grid ∈ R nx ny nz

∇ ⋅ (ε ∇ φ ) = Σ δsources + Σ G(λk, ψk)

L φ   =  P +   f  (  ψ  )

- ∇ ⋅ ( (h2 / 2m ) ∇ ψ ) + (φ + U ) ψ = λ ψ

S ψ  + V( φ  ) = λ ψ



(I) Eigenvalue/Eigenvector problem

 Challenges:

• A large number of eigenvectors/eigenvalues
  must be computed

Many wave functions comprise the
quantum wire

• Eigensystem must be re-computed for each
   self-consistent iteration.

• 3D    (                      )ψ ∈ R
nx ny nz

- ∇ ⋅ ( (h2 / 2m ) ∇ ψ ) + (φ + U ) ψ = λ ψ



The eigenvalues/eigenvectors can be obtained
with standard methods...

but you will have to wait awhile (days).

How have results been obtained more rapidly?

(I) Eigenvalue/Eigenvector problem
- ∇ ⋅ ( (h2 / 2m ) ∇ ψ ) + (φ + U ) ψ = λ ψ



(I) Approach

Change the problem so that the eigenproblem
can be solved more efficiently.

Take advantage of special geometry : 1D and 2D
Shroedinger-Poisson equation idea.



1D and 2D Schroedinger-Poisson

φ(x,y,z) = α(z)

ψ(x,y,z) = γ(z) e ikx e iky

φ(x,y,z) = α(z,x)

ψ(x,y,z) = γ(z,x) e ikx

Separate variables - be clever
(density of states technique)

1D-SP 2D-SP

1D Poisson
1D Schroedinger

2D Poisson
2D Schroedinger



φ(x,y,z)     α(z) + β(x) +χ(y)~~

ψ(x,y,z) = γ(z) µ(x) ϖ(y)

Family of approximations:

3D Poisson

1D Schroedinger +
2D Schroedinger

φ(x,y,z)     α(z) + β(x)

ψ(x,y,z) = γ(z) µ(x) e iky

~~ ~~

ψ(x,y,z) = γ(z) µ(x,y)

φ(x,y,z)     α(z) + β(x,y)

3D Poisson

3 x 1D Schroedinger

2D Poisson

2 x 1D Schroedinger

φ = α(z)

1D-SP 2D-SP

ψ = γ(z) e ikx e iky

φ = α(z, x)
ψ = γ(z, x) e iky

SP



The Equations We Actually Solve

3D Poisson 1D Schroedinger + 2D Schroedinger= α(z) + β(x,y)

- ∇ ⋅ ( (h2 / 2m ) ∇ ψ ) + (φ + U ) ψ = λ ψ~

φ
~

=  α(z) 1D Poisson 1D Schroedinger

φ~ = α(z) + β(x) 2D Poisson 2 x 1D Schroedinger

∇ ⋅ (ε ∇ φ ) = Σ δsources + Σ G(λk, ψk)

φ
~

CPU work required for 1D & 2D operators << 3D operator



(II) Poisson Equation

∇ ⋅ (ε ∇ φ ) = f(x,y,z)

• Discontinuous coefficients

• Thin layers 

• Non-trivial geometry 

Issues:

• 3D  (                   ) φ  ∈ R
 nx ny nz



Poisson Equation

but they don’t take advantage of the
special features of the problem.

The solution can be obtained with standard
methods...

∇ ⋅ (ε ∇ φ ) = f(x,y,z)



(II) Solution Technique:

 Use “analytic” x 2D Fourier basis:

Use piecewise analytic solution of 1D equation
(extension of Wachspress’s idea) and analytic
inclusion of δ function sources.

2D Fourier transform at each z  ⇒



(II) Features:

• Exact in harmonic regions 

• Allows extreme refinement in z-direction

• High accuracy 

• Non-iterative & “Fast”        O(nznxnylog(nxny)~~



Equivalent accuracy near wells, even with “extreme’’
coarsening in the vertical direction.
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(II) Accuracy with extreme mesh coarsening:
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φ  along center line (z-axis)

Finite
volume

Analytic X
Fourier (2)

Analytic X
Fourier (4)

Max. Error

6.80e-03

Uniform Mesh

Non-Uniform Mesh

8.44-04 1.96-06

1.96-06

2.07-04

2.07-04

Accuracy unchanged --- and
requires only 1/10 CPU time!



(III) Self-Consistency

- ∇ ⋅ ( (h2 / 2m ) ∇ ψ ) + (φ + U ) ψ = λ ψ

∇ ⋅ (ε ∇ φ ) = Σ δsources + Σ G(λk, ψk)

Schrodinger-Poisson

∇ ⋅ (ε ∇ φ ) = Σ δsources + Σ G(λk (φ), ψk(φ))

Transform 
to Non-linear Poisson 

L(φ) = S F(φ)+



Discrete?

=L(  φ  ) S F(  φ  )+

nznxny non-linear equations in nznxny unknowns

(III) Self-Consistency

∇ ⋅ (ε ∇ φ ) = Σ δsources + Σ G(λk (φ), ψk(φ))

L(φ) = S F(φ)+



Self consistent iteration story ...

∇ ⋅ (ε ∇ φ )  =  Σ δsources + Σ G(λk (φ), ψk(φ))

Gradient methods: Newton & quasi-Newton

Σ G(λk (φ), ψk(φ))⇒  requires gradients of

Derivatives of G are not continuous in
zero temperature limit.

Evaluation of the derivatives is complicated.

Robust convergence behavior requires
careful iteration design.

Highly dimension dependent code.



Return to “simple” iteration

∇ ⋅ (ε ∇ φ n+1 )  =  Σ δsources + Σ G(λk (φn), ψk(φn))

Iteration procedure is dimension “independent”

Easy to implement.

Iteration doesn’t always converge.

Introduce a relaxation parameter:

φ n+1 =  (1-α)φn + α φ*

L(φ*) = S+ F(φn)

( L(φ n+1 ) = S + F (φ n ) )



“simple” iteration with relaxation

Requires small α to get convergence ⇒ 100’s of iterations

We observe that “simple” iteration is just Euler’s method
with timestep α applied to

= L-1(S + F(φ))- φ∂φ
∂t

φ n+1 =  (1-α)φn + α φ*

L(φ*) = S+ F(φn)

Fix?



Equivalence to Eulers’s method

φ n+1 =  (1-α)φn + α φ*

L(φ*) = S+ F(φn)

⇒         φ n+1           =  φn + α (L-1 (S+ F(φn))- φn )

⇒                          = L-1 (S+ F(φn))- φn(φ n+1 -  φn )
α

= L-1(S + F(φ))- φ∂φ
∂t

⇒  Euler’s method with timestep α applied to 



Using This Observation

The need for small α for convergence ⇒ “stiff” ODE.

Euler’s method is not a good way to solve “stiff” ODE’s. 

So use an alternate ODE method ... 



n stages

Stabilized Runge-Kutta Methods

For steady state calculations -- use
first order methods with extra stages
chosen to possess large regions of
absolute stability.

⇒ There is a method whose region of
absolute stability contains [-γ n2, 0] for
0 < γ  < 2.



(III) Solution Technique

∇ ⋅ (ε ∇ φ )  =  Σ δsources + Σ G(λk (φ), ψk(φ))

L(φ) = S F(φ)+

 “Evolve” to the solution by solving

= L-1(S + F(φ))- φ∂φ
∂t

to steady state using a custom Runge-Kutta ODE
method.



Sample 2D Results

Potential + band offset Charge density



3D Results



3D Results



Why the need for speed?

We want to explore parameter space ...



Parameter
Range
Specification

Simulation

Run
Database

Parametric Results
Viewer

Optimization Process

Interpolation in
n-dimensional
parameter space

Parametric database construction and evaluation


