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The Target Device:

e Creates and confines a quantum dot electrostatically
e Senses dot using a guantum wire.
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Single particle Schroedinger Equation

V(x) = potential

RN

Single particle, 1 dimensional, time independent
Schroedinger’s Equation ;
r2/2m) LY vy = E v
d x
v* v = probability density for particle location

E = energy of the particle



3D

V(Xy,2) =

Trap electrons: vertically in quantum “wells”

transversely using gate potentials



Device Operation:

Side voltage applied Side and dot voltage applied
guantum wire guantum wire + quantum dot
Multiple states in the lower well. Single state in the upper well.
Confinement in 2 directions. Confinement in 3 directions

Multiple states in the lower well.
Confinement in 2 directions



Goal of the computational simulations:

To help those involved in building the
device make intelligent design decisions.

Design decisions?

How thick should the wells be?
How wide should the center dot gate be?

Should the side gates be wedges or strips?

How much 6 doping should there be?

What is the impact of variations in the 6 doping?

*

*

*



Modeling

Simplest model that provides useful answers.

Complete Physics

Perturbations of SP) <= Gyure

Schroedinger
Poisson (SP)
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Use Dimension reduction

1D



Equations
Coupled Poisson-Schroedinger equations

\ (8 \ (1) ) =2 6sources + 2 G(}“k’ \Vk) (1) : pOtentiaI
-V-((K/2m)Vy)+(+U)y=Avy vy : wave functions

Computational tasks:
 (I) Eigenvalue/Eigenvector problem

e (I1) Solution of Poisson’s equation

e (I11) Self consistent solution



—> —>
® , V¥ : vectors of values at nodes of
grid e R™" "

V.- (eVd) =20yt Z G, v,)
= Ly =P+ (¥
-V (R/2m)Vy)+ (@ +U)y=rAvy

=) Sy +V(§)=Ay



(1) Eigenvalue/Eigenvector problem
-V-((R/2m)Vy)+ (@ +U)y=rAvy

Challenges:

e3D (YeR™M™ )

e A large number of eigenvectors/eigenvalues
must be computed

= y __ Many wave functions comprise the

i <« guantum wire

e Eigensystem must be re-computed for each
self-consistent iteration.



-V (®/2m)Vy)+ (@ +U)y=Ary

The eigenvalues/eigenvectors can be obtained
with standard methods...

but you will have to wait awhile (days).

How have results been obtained more rapidly?



Change the problem so that the eigenproblem
can be solved more efficiently.

~—

Take advantage of special geometry : 1D and 2D
Shroedinger-Poisson equation idea.



1D and 2D Schroedinger-Poisson

1D-SP 2D-SP
i
¢(x,y,z) = a(z) ¢(X,y,z) = a(z,x)
W(X1y1z) — 'Y(Z) e kx g iky \V(Xay1z) = 'Y(Z,X) e ikx
) Separate variables - be clever
(density of states technique) —
d d =56 G A
%(E d_j) = > 0s + 2uG1ol¥y, Ax) V(e Va) =300 + XaGanl7i Ax)
ﬁ?
d R dy _ Vi Vy) +{a+U)y= Ay
Lo )t U)y=Ay 2m
1D Poisson 2D Poisson

1D Schroedinger 2D Schroedinger



Family of approximations:

1D-SP

2D-SP

= o(2)
— Y(Z) e ikx e |ky/
o(x,y,z) = a(z) + B(x)

y(xy,2) = v(2) n(x) e v

2D Poisson

2 x 1D Schroedinger

= oz, X)
=v(z, X) e &

0(Xy,2) = az) + B(X) +x(Y)

v(x,y,2) = 7(2) nx) a(y)

3D Poisson

3 x 1D Schroedinger

0(Xy,2) = oz) + B(X.y)
v(x.y,2) = v(2) n(x.y)

3D Poisson

1D Schroedinger +
2D Schroedinger



The Equations We Actually Solve

V'(SV(I)) :2850urces+ZG(}‘~k’ \Vk)
-V (®@/2m)Vy)+ (G +U)y =Ly

O = a(2) 1D Poisson 1D Schroedinger

(|'; = a(z) + B(X) 2D Poisson 2 x 1D Schroedinger

—

®» =a(z) +B(x,y) 3D Poisson 1D Schroedinger + 2D Schroedinger

CPU work required for 1D & 2D operators << 3D operator



(11) Poisson Equation

V-(eVd)=1XyYy,2)
Issues:

e3D (§ R V™)

e Discontinuous coefficients

e Thin layers

e Non-trivial geometry



V- (8 \% (I) ) — f(X’y’Z)

The solution can be obtained with standard
methods...

but they don’t take aavantage of the
special features of the problem.



Use “analytic” x 2D Fourier basis:

T '
z x, y E (g kg e1gx of2gy
ki,ka

2D Fourier transform at each z =

d , day, p(2) dmki  dmk; ‘

Use piecewise analytic solution of 1D equation
(extension of Wachspress’s idea) and analytic
Inclusion of 6 function sources.



e Exact in harmonic regions
e Allows extreme refinement in z-direction

e High accuracy

7 —

 Non-iterative & “Fast” =  O(n,n,n,log(n,n,)



Equivalent accuracy near wells, even with “extreme”

coarsening in the vertical direction.




(1) Accuracy with extreme mesh coarsening:

Max. Error
129 . . . | . Finite Analytic X Analytic X
- Uniform Mesh | volume | Fourier (2) Fourier (4)

\ | 8.44-04 | 2.07-04 1.96-06

0.43 ™~
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(111) Self-Consistency

Schrodinger-Poisson
= (8 \ (I) ) = 2 8sources + 2 G(kk’ ‘Vk)
-V ((@/2m)Vy)+ (o+U)y=Lry

ﬂ Transform
to Non-linear Poisson

2 (8 \ (I) ) = 2 6sources + 2 G(kk (d))’ \Vk((l)))
v v v

L) =S + F)



2 (8 \ (I) ) = 2 6s.ources. + 2 G(kk ((I))’ \Vk((l)))
v v v

L) =S + F()

Discrete?

—

L(§)=S +F(3)

n,n,n, non-linear equations in n,n,n, unknowns



Self consistent iteration story ...

V- (8 \ (I) ) = X 8sources + 2 G(kk ((I))’ \Vk((l)))

Gradient methods: Newton & quasi-Newton

—> requires gradients of = G(A, (¢), wi(9))

Derivatives of G are not continuous In
zero temperature limit.

Evaluation of the derivatives is complicated.

Robust convergence behavior requires
careful iteration design.

Highly dimension dependent code.



Return to “simple” iteration

V-V M) = Edgyres T Z Gy (0, wil(d")
(L(e™)=S+F(@"))

Easy to implement.

Iteration procedure is dimension “independent”
Iteration doesn’t always converge.

Introduce a relaxation parameter:

L(¢7) = S+ F(o")
¢ "= (1-a)9"+ a ¢’



“simple” iteration with relaxation

L(¢") = S+ F(o")
¢ "= (1-a)9"+ a ¢’

Requires small o to get convergence —> 100’s of iterations

FIx?

We observe that “simple” iteration is just Euler’'s method
with timestep o applied to

% - |- _
L= LS+ F@)- ¢



Equivalence to Eulers’s method

L(¢") = S+ F(o")
¢ "= (1-a)9"+ a ¢’

— oMt ="+ a (L (S+F(9M)- ¢")

= (0™-9") =L (S+ F(9M)- ¢

a

—> Euler's method with timestep a applied to

op _ |1 _
== LS + F(9))- ¢



Using This Observation

The need for small o for convergence = “stiff” ODE.
Euler's method is not a good way to solve “stiff” ODE’s.

So use an alternate ODE method ...



Stabilized Runge-Kutta Methods

ky = dt« flym)
ko = dt x fym + 01 K1)
Fg = dt % F(¥p + 0F k1 + 0f kz)

ko =dtx fly, +ol T+ ol T+ + o+ k)
Yntl = ¥m T 07 k1 +0l ka4 4ol &,

For steady state calculations -- use
first order methods with extra stages /
chosen to possess large regions of

absolute stability.

n stages —> There is a method whose region of
absolute stability contains [-y n?, O] for
O0<y <2




V- (8 \% (I) ) = X 6sources + 2 G(}“k ((I))’ \Vk((b))
v v v
L(¢p) =S + F(9)

“Evolve” to the solution by solving

op _ |1 _
= LS + F(4))- ¢

to steady state using a custom Runge-Kutta ODE
method.



Potential + band offset Charge density
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Parametric database construction and evaluation

Parameter )
Range
Specification

Interpolation in
n-dimensional
parameter space

Simulation
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Parametric Results
Viewer

Optimization Process
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