
U CLA
CO M P U TAT IO NALAND AP P LIE D M ATHE M AT ICS

NetApp Wrappers:Higher levelconstruc tionofd istributed

applicationsusingthe cam.netapp P ackage

Christopher R .And erson

Septemb er 1998

CAM R eport 98-4 0

D epartmentofM athematics
U niversityofCalifornia,L os A ngeles

L os A ngeles,CA .90 0 95-1 555

NetApp Wrappers :

Higher level construction of distributed applications using the cam.netapp package.

Abstract : This report describes a technique that enables one to create a distributed version of an application that is
originally composed of classes interacting through standard method calls. The technique involves the construction and
use of auxiliary or ``wrapper" classes. A utility program for automatically generating the wrapper classes is described.
The cam.netapp package is used to provide the communications infrastructure. Extensions of the technique can be made
to other communications infrastructures, e.g. that provided by the Java RMI package.

These software components were developed in conjunction with the research supported by Air Force Office of Scientific
Research Grant F49620-96-I-0327 and National Science Foundation/ARPA Grant NSF-DMS-961584

Chris Anderson
Dept. of Mathematics
UCLA Los Angeles, CA 91555
anderson@math.ucla.edu
(C) UCLA 1998

1. Introduction

Java contains many packages and constructs that facilitate the creation of "distributed"
applications --- applications whose constituent classes are running on geographically separated
machines. However, the process of learning about these constructs (or just remembering them)
and creating the requisite code for a distributed application can be very time-consuming. What's
needed is a software infrastructure that assists one in putting classes in a network accessible form
and enables the creation of applications that utilize both ``local'' and ``remote'' class instances.
Ideally the use of this infrastructure should be as simple as creating and ``publishing'' Web pages.

1 of 13 9/30/98 12:21 PM

In particular, the use of the infrastructure should not require knowledge of the
networking/communications constructs that are are used to implement the infrastructure.

There are a variety of ways that this infrastructure can be created. For example, if the
communication between components is constrained to be through stream connections, than one
can create a modest infrastructure that possesses these features. The classes in the cam.netapp [1]
[2] package provide such an infrastructure. While it is not difficult to create components that
communicate via streams, it's a non-standard programming style. One therefore seeks an
infrastructure that allows code components to communicate via standard method calls. One
infrastructure that provides this is the Java RMI package . The general idea behind the RMI
package is to provide an infrastructure that allows one to create client-server applications. The
client classes execute on a local machine and communicate over the network with server classes
executing on a remote machine. The client classes have the capability of invoking server class
methods using standard method calls. The default use of this package requires one to explicitly
create classes that implement either a ``client'' structure or a ``server'' structure. If one has an
existing application then there can be a bit of programming to get the application into the
appropriate client-server form. In an effort to minimize the amount of programming it takes to get
components into a network accessible form, we describe an alternate infrastructure that supports
code components that communicate via standard method calls.

The approach is based upon "wrapper" classes. The general idea for using wrapper classes is as
follows: Suppose one has an application with the following structure :

In the application, we consider App the "front", or client, and Aclass, the "back" or server class.
To keep things simple for now, we assume that App only accesses methods of Aclass. The
challenge is to figure out how, with minimal programming, this application can be made to run in
a distributed fashion e.g. App executing on one machine and Aclass executing on another.

One means of creating such a distributed application in which App and Aclass are separated is to
have App communicate with another class possessing the same interface as Aclass, but whose
functionality is provided by a remote instance of Aclass. This remote functionality is obtained
through remote method requests sent via a stream connection (implemented using
cam.netapp.NetworkConnection) to a class on a remote machine that invokes the appropriate
methods of an Aclass instance and then returns the results. Thus a distributed version of the
application has the form

2 of 13 9/30/98 12:21 PM

Here AclassCI (which stands for Aclass (C)lient (I)mplementation) is the class whose interface is
identical to Aclass and communicates with AclassSI (which stands for Aclass (S)erver
(I)mplementation). AclassSI contains a local instance of Aclass to obtain its functionality.
AclassCI and AclassSI are the wrapper classes utilized in the creation of this distributed
implementation. Once the wrapper classes are created for Aclass, identical programming
constructs can be use for either local or remote use of an Aclass instance.

The cost of creating a distributed application in this way is the cost of creating the wrapper
classes. Fortunately this construction can be automated and the application
cam.codegen.CreateCISI does this. Thus, the task of creating a distributed version of an
application involves only a modest number of code changes (a constructor change, and a call
specifying the address and port of the remote instance), as well as the invocation of the
cam.codegen.CreateCISI application.

In the following section we present an extended an example where a distributed version of an
application is constructed. In section 3, the nature of the Client Implementation and Server
Implementation classes, and "how they work" is discussed. Callbacks from the server class to a
client class are possible, and these are described in section 4. In section 5, we discuss how the use
of class interfaces can minimize the amount of code that must change when one switches between
the a local and a remote class instance. Lastly we discuss the use of "wrappers" with the Java RMI
package.

For this work, our primary Java references were the books [3], [4] and [5].

2. An Example

As an example, we consider the creation of an application with the two classes mentioned in the
introduction, App and Aclass. The App class will have a method called doCalculation(...)
that invokes an Aclass method addTwo(...). Thus, the App class will be the "client" class and
Aclass the "server" class.

The starting point is the construction of a purely local implementation. This implementation can
be viewed in Sample1/App.java and Sample1/Aclass.java. The implemenation is as one would

3 of 13 9/30/98 12:21 PM

expect; App contains the data member A -- an Aclass instance. The doCalculation(...)
method merely invokes A.addTwo(...) to obtain the result. The App.main(...) routine tests the
construction. The output from the program is

The result of the calculation = 7 (and should = 7)

The next step consists of creating the wrapper classes for Aclass. This is is accomplished by
invoking the the cam.codegen.CreateCISI application. The interface to the program has the form

You must type in the name of the package that the class resides in (e.g. if it is in package
cam.codegen, then one would type in cam.codegen). In this example, Aclass is in the default
package, so one leaves the package field empty. In the Class field one must specify the name of
the class. This program creates the wrapper classes, and, by default, internally invokes the Java
compiler to compile them. If one doesn't want this program to compile the routines after
construction, then clear the Compile After Construction checkbox.

Note that when running the CreateCISI application, the target class must reside in a directory that
allows JAVA classes to be loaded; in particular, the concatenation of a directory listed in the
CLASSPATH variable and the package name of the target class must yield a directory the target
class resides in.

This result of using cam.codegen.CreateCISI is the creation of two classes AclassCI.java and
AclassSI.java.

With the wrapper classes constructed and compiled, the next step is to modify the App class to
utilize the client implementation class AclassCI. This version is contained in the file
Sample2/App.java. The required changes consist of changing the declaration of the variable A
from

 Aclass A;

4 of 13 9/30/98 12:21 PM

to

 AclassCI A;

and changing the constructor from

 A = new Aclass();

to

 A = new AclassCI();
 try
 {
 A.setVerboseFlag(true);// remove to stop messages ..
 A.createServerInstance("127.0.0.1",6789);

 }catch(Exception e)
 {System.out.println(e.getMessage());}

This new code is compiled and then tested by invoking the cam.netapp.ServerManager, and
running App.main(...). With the verbose mode on, the output from the program has the form:

NetworkConnection : Setting up Connection
NetworkConnection : Connecting to [127.0.0.1] Port : 6789
NetworkConnection : Connected to [127.0.0.1] Start Up Port : 6815
NetworkConnection : Connected to [127.0.0.1] Server Port : 6816
NetworkConnection : Connected to [127.0.0.1] Server Port : 6817
NetworkConnection : Connected to [127.0.0.1] Server Port : 6818
NetworkConnection : Application AclassSI requested
NetworkConnection : Remote Class Found
NetworkConnection : Remote Class Instantiated
NetworkConnection : Streams Connected to Remote Class
NetworkConnection : Connection Complete
NetworkConnection : Starting Remote Application
AclassCI : Connection Complete
The result of the calculation = 7 (and should = 7)

At this point, one can test the program working between two machines. To accomplish this one
needs to have App and AclassCI on the client machine and Aclass and AclassSI on the server
machine. The server classes Aclass and AclassSI must reside in a directory where they can be
loaded by the cam.netapp.ServerManager running on the server machine. Also, the address and
port numbers utilized in A.createServerInstance(...); method should be set to the server
machine and port where the cam.netapp.ServerManager is running..

Here's a summary of the steps associated with the construction of a distributed application

1. Develop the client and server class locally. Utilize standard JAVA programming tools and
get the application running.

2. Invoke cam.codegen.CreateCISI and create the client (CI) and server (SI) impementation
classes. Compile these classes (if one doesn't select the compile option of the
cam.codegen.CreateCISI application).

5 of 13 9/30/98 12:21 PM

3. Modify the client code to utilize the client (CI) implementation of the server class. Test the
implementation locally (e.g. run a local cam.netapp.ServerManager and specify the loop
back address (usually 127.0.0.1) as the machine location in the createRemoteInstance(...)
method).

4. Export the server class and its associated server (SI) implementation class to a remote
machine. Make sure the classes reside in a location that allows a
cam.netapp.ServerManager instance to load. them. One needs to change the address and
port number in the createRemoteInstance(...) method called by the client application.

To run the distributed application; start up the cam.netapp.ServerManager on the remote
machine, and then start the client application.

3. How it's done

The code in the wrapper classes is just code one would construct ``by hand'' if one were directly
using the cam.netapp classes. For example, if one considers the two classes AclassCI.java and
AclassSI.java that are generated, one sees that the client implementation (CI) contains the public
methods of Aclass. For each method in the CI implementation, a vector of parameters
methodData is created and transmitted to the corresponding server (SI) class. The first element of
methodData contains the index of the method, and the remaining elements of the vector contain
the method parameters. All parameters are transformed to Object instances before transmission,
e.g. an int parameter is transformed to an Integer object before being added to the vector of data.

The vector of data is transmitted over a connection established using a
cam.netapp.NetworkConnection instance. There is one single transmission statement;
Os.writeObject(methodData). The writeObject(...) method automatically serializes all the
elements of the data vector, and then writes the results to its associated stream. On the receiving
end, the server (SI) class has a single read statement that listens for the vector of method data.
Once this vector is received, the data is unpacked, and the appropriate method of a local instance
of Aclass is called. Every routine in the server implementation creates a return vector that carries
return status, return data, and any exceptions that may have been called. The client
implementation (CI) reads the return data, un-packs it, and returns to the invoking program.

To construct the client (CI) and server (SI) wrapper classes the CreateCISI application uses a
utility class CreateNetAppWrappers. This utility class first loads an instance of Aclass, then uses
Java's class reflection methods (i.e. the methods of java.lang.Class) to determine the public
methods, parameters, return types, etc. and then writes the wrapper class code using this
information.

4. Implementing Callbacks

If an application has "callbacks", that is, the server class has the capability of invoking methods on
the client, then the distributed implementation is a bit more complicated than when callbacks are
not present. In particular, when there are callbacks, the client must act as a server as well, and

6 of 13 9/30/98 12:21 PM

appropriate communication links must be established for this. In keeping with the philosophy that
the migration from a local implementation to a distributed implementation should be as simple as
possible, our goal was to have it so minimal programming changes are required when creating a
distributed implementation of an application that possesses callbacks. Thus, the idea is that a
programmer creates and debugs an application with callbacks and then creates a distributed
implementation by making a small number of code modifications and by creating appropriate
wrapper classes (classes that are automatically generated) .

As with the creation of distributed applications without callbacks, perhaps the best means of
revealing the procedure and requisite programming constructs is through an example. So,
consider a two component application of the form used previously :

However, in this version, Aclass contains a reference to App for callbacks, and one method of the
App class (typically the constructor) calls an Aclass method to set the reference to App. To
facilitate the conversion to a distributed implementation, we require Aclass set the reference to
App by implementing the cam.netapp.SetClient interface.

In the purely local version of the application, the App class constructor has the form

public App()
{
 A = new Aclass();

 try{
 A.setClient((Object)this); // Using the method defined by
 // cam.netapp.SetClient to set the
 } // callback
 catch(Exception e){};
}

while in the Aclass class, the method setClient(...) has the form

public void setClient(Object Ob)throws Exception
{
 appClient = (App)Ob;
}

The complete codes are contained in the files Sample3/App.java and Sample4/Aclass.java.

Using these constructions gives the Aclass instance the capability of invoking App methods. For
demonstration purposes App contains the methods testCallBack(...) and
printString(...). Aclass contains the method useCallBack(...). The construction is tested
by having App.main(..) create an App instance and invoke the testCallBack(...) method.
This method immediately invokes the Aclass useCallBack(...) method which in turn invokes
the client instance printString(...)method. The output from the App.main(...) is

The String "Callback Ok" Indicates Success

7 of 13 9/30/98 12:21 PM

Callback OK

In a distributed implementation, the existence of a callback requires that the App class act as a
server class. Thus, wrapper classes AppCI and AppSI are required to implement the connection
between Aclass and App. Ultimately, the structure of the distributed application has the form

The additional wrapper classes consist of AppCI and AppSI, classes that enable the Aclass
instance access (via AppCI methods) the methods of the App instance.

To create a distributed implementation from the local implementation consists of

1. Creating the classes AclassCI, AclassSI, AppCI, AppSI.

2. In App, changing the server type from Aclass to AclassCI.

3. In Aclass changing the callback reference from type App to AppCI. Note that the
setClient(...)method requires modification as well.

4. Adding System.exit(0) to App.main(...). If one doesn't do this, then the AppSI instance
remains after App has exited.

The new App constructor has the form

public App()
{
 // Using local : uncomment the next block
 // #######################################

 // A = new Aclass();

 // #######################################
 //
 // Using remote : uncomment the next block
 // #######################################

8 of 13 9/30/98 12:21 PM

 A = new AclassCI();
 try
 {
 A.setVerboseFlag(true);// remove to stop messages ..
 A.createServerInstance("127.0.0.1",6789);

 }catch(Exception e)
 {System.out.println(e.getMessage());}

 // #######################################
 //
 try{
 A.setClient((Object)this); // Using the method defined by
 // cam.netapp.SetClient
 }
 catch(Exception e){System.out.println(e);};
}

while Aclass implementation of cam.netapp.setClient(...) now has the form

public void setClient(Object Ob) throws Exception
{
 appClient = (AppCI)Ob;
}

Sample4/App.java and Sample4/Aclass.java contain the source for the distributed version of the
application.

With these changes, when the setClient(...) method of Aclass is invoked, then the callback
structure described above is automatically instantiated. (This assumes the AppSI is located on the
client machine and AppCI is located on the server machine).

The output from the App.main(...) with the verbose mode set has the form

NetworkConnection : Setting up Connection
NetworkConnection : Connecting to [127.0.0.1] Port : 6789
NetworkConnection : Connected to [127.0.0.1] Start Up Port : 6791
NetworkConnection : Connected to [127.0.0.1] Server Port : 6792
NetworkConnection : Connected to [127.0.0.1] Server Port : 6793
NetworkConnection : Connected to [127.0.0.1] Server Port : 6794
NetworkConnection : Application AclassSI requested
NetworkConnection : Remote Class Found
NetworkConnection : Remote Class Instantiated
NetworkConnection : Streams Connected to Remote Class
NetworkConnection : Connection Complete
NetworkConnection : Starting Remote Application
AclassCI : Connection Complete
The String "Callback Ok" Indicates Success
Callback OK

So, the steps to the creation of a distributed version of a two component application with
callbacks consists of

1. Creating and debugging a local version of the application, a version in which the
cam.netapp.SetClient interface is used by the client class to set the callback reference.

9 of 13 9/30/98 12:21 PM

2. Generation of the client (CI) and server (SI) classes for both components.

3. Modification both components to use the client (CI) classes.

5. Using Interfaces to Minimize Code Modification

As described, the process of creating a distributed implementation from a local implementation
requires code changes. While these are few, the fact is that one must change and recompile the
code. This is a drawback, because it means that one has to worry about two versions of an
application and not just one. By investing a little more time in the local implementation, one can
make it so that the conversion to the distributed version requires no re-compilation; the use of a
remote class instance can be enabled at run-time.

The idea is to define an interface class that contains the public methods (excluding constructors
and static methods) for the server class. One then has the server class and its associated client
implementation (CI) implement this interface. In the client class, one programs using an interface
class reference, and then dynamically loads either the server class or its client interface depending
upon if one wants a local or a distributed implementation. The structure for the sample two
component application involving App and Aclass is the following

As an example, an interface describing the methods of Aclass used in the first example
(Sample1/Aclass.java) has the following form

public interface AclassIf
{
 public int doCalculation(int D);
}

Now, by having Aclass implement this interface, and writing the code in App to only use this
interface, one can create an App class that does not need to be recompiled when the distributed

10 of 13 9/30/98 12:21 PM

implementation is used. (After creating Aclass so that it implements the AclassIf interface, then
AclassCI and AclassSI are generated using cam.codegen.CreateCISI. The program
cam.codegenCreateCISI will automatically have AclassCI implement the AclassIf interface if
Aclass does.)

Sample5/App.java and Sample5/Aclass.java contain the implementations of App and Aclass that
utilize this construction.
Of interest in these classes is the mechanism by which either the local or remote instance of Aclass
is instantiated by the App class.
The App constructor has the following form, exhibiting how this is accomplished with dynamic
loading;

public App(boolean localFlag)
{
 String serverClassName = "Aclass";
 String serverClassNameCI = "AclassCI";
 String address = "127.0.0.1";
 int port = 6789;

 Class theClass = null;
 Object theObject = null;
 if(localFlag) // local implementation
 {
 try
 {
 theClass = Class.forName(serverClassName);
 theObject = theClass.newInstance();
 }
 catch(Exception ex)
 {System.out.println("Class Not Found : " + ex.getMessage());};
 }
 else // distributed implementation
 {
 try
 {
 theClass = Class.forName(serverClassNameCI);
 theObject = theClass.newInstance();
 }
 catch(Exception ex)
 {System.out.println("Class Not Found : " + ex.getMessage());};
 // request the remote instance
 try
 {
 ((cam.netapp.CIinterface)theObject).setVerboseFlag(true);
 ((cam.netapp.CIinterface)theObject).createServerInstance(address,port);
 }
 catch(Exception e){System.out.println(e);};
 }
//
// Cast the object to type AclassIf
//
 A = (AclassIf)theObject;
}

So, depending on the flag passed into the App constructor, either a local or a distributed
implementation is created. It is important to note that the method createServerInstance(...)

11 of 13 9/30/98 12:21 PM

is accessed via the interface cam.netapp.CIinterface. The use of the cam.netapp.CIinterface
interface ensures that the initialization code does not require the any explicit reference to the
AclassCI class. (This is important because this ensures that the existence of AclassCI is not
necessary for App to compile)

Here are the results obtained with App.main(...)

 Local Results
The result of the calculation = 7 (and should = 7)

 Distributed Results
The result of the calculation = 7 (and should = 7)

So, if one is using the NetApp wrapper constructs, in order to create applications in which the
transition from a local to a distributed implementation requires minimal re-coding one needs to

1. Create both a server class and a server class interface that the server class implements.

2. Have all client applications utilize the server interface reference for all server method calls

3. Initialize the server instance by dynamically loading the server class or the server class client
(CI) implementation by name.

The cost of carrying out this work is that of keeping the server class and the server class interface
synchronized. This is a source of errors, but, fortunately, the compiler typically lets you know if
they are not synchonized.

6. Using Wrappers and Java RMI

Our main emphaisis has been on the construction and use of wrapper classes that utilize the
cam.netapp package to provide the underlying communication link, however, it is also possible to
use the same techniques to create wrapper classes that utilize the Java RMI package as the
communications link. In particular, the application cam.codegen.CreateRMI takes an existing
class and creates the appropriate wrapper class and wrapper interface so that it is in the ``server''
form required by the Java RMI interface.

Consider again our first example, the application whose components are contatined in
Sample1/App.java and Sample1/Aclass.java. The creation of a distrubuted version that uses the
Java RMI package requires

The creation of a server interface and server wrapper class for the Aclass component.

Modification of the App client to use the Aclass server interface class.

The application cam.codegen.CreateRMI creates the required server classes. When applied to
Aclass, the application creates the server wrapper class AclassRS.java ((R)MI (S)erver) and the
server interface AclassRI.java ((R)MI (I)nterface). As with all RMI server classes, the JDK rmic
utility program is applied to AclassRS to create the stub and skeleton classes AclassRS_Stub and

12 of 13 9/30/98 12:21 PM

AclassRS_Skel.

The interface class, AclassRI.java, extends java.rmi.Remote and contains all the public methods of
Aclass. The interface is not identical to that of Aclass, because each method throws
java.rmi.RemoteExceptions (as required of any class that extends extends java.rmi.Remote). The
server class AclassRS.java implements the AclassRI interface and obtains its functionality by
invoking the appropriate methods of an Aclass instance that AclassRS contains. Also included in
AclassRS is the requisite main(...) invocation that sets the SecurityManager and registers the
class with the rmiregistry.

After this packaging of Aclass into a "server" form, the client appliction App must be modified to
use a reference of type AclassRI. In addition to changing the data member declaration, the
constructor requires modification and all AclassRI method calls must placed within a try-catch
block The modificed code is presented inSamples6/App.java.

Prepretory to running the distributed application requires appropriately placing class components
on the local and remote machine. The location of the files is given in the following table

Local Remote

App.class (uses AclassRI) Aclass.class
AclassRI.class AclassRS.class
AclassRS_Stub.class AclassRS_Skel.class

Once the files are in place, one starts the rmiregistry on the remote machine, and then starts an
instance of AclassRS (e.g. by running a statement of the form java AclassRS). The client
application App is then invoked and it communicates AclassRS on the remote machine.

References

[1] Anderson, C.R., cam.netapp Package Documentation
www.math.ucla.edu/~anderson/JAVAclass/CAMJava.html, 1997

[2] Anderson, C.R.,Creating Distributed Applications with the cam.netapp Package, UCLA Dept.
of Mathematics CAM Report 98-39 1998.

[3] D.J. Berg and J.S. Fritzinger, Advanced Techniques for Java Developers, Wiley & Sons.,New
York, 1997.

[4] M. Campione, K. Walrath, The Java Tutorial Second Edition, Addison-Wesley, Reading
Massachusetts, 1998.

[5] D. Flanagan, Java in a Nutshell, O'Reilly, Sebastapol Ca., 1997.

13 of 13 9/30/98 12:21 PM

