UCLA
COMPUTATIONAL AND APPLIED MATHEMATICS

NetApp Wrappers : Higher level construction of distributed

applications using the cam.netapp Package

Christopher R. Anderson

September 1998
CAM Report 98-40

D epartmentofil atthematics
U nersity of Califaomnia, L s A noekes
L A noekes, CA _90095-1 555

NetApp Wrappers :

Higher level construction of distributed applications using the cam.netapp package.

Abstract : Thisreport describes atechnique that enables one to create a distributed version of an application that is
originally composed of classesinteracting through standard method calls. The technique involves the construction and
use of auxiliary or ““wrapper" classes. A utility program for automatically generating the wrapper classesis described.
The cam.netapp package is used to provide the communications infrastructure. Extensions of the technique can be made
to other communications infrastructures, e.g. that provided by the Java RMI package.

App Aclass
App Aclass
Internet
AclassCI VA AclassSI

These software components were developed in conjunction with the research supported by Air Force Office of Scientific
Research Grant F49620-96-1-0327 and National Science Foundation/ARPA Grant NSF-DM S-961584

Chris Anderson

Dept. of Mathematics

UCLA Los Angeles, CA 91555
anderson@math.ucla.edu

(C) UCLA 1998

1. Introduction

Java contains many packages and constructs that facilitate the creation of "distributed"
applications --- applications whose constituent classes are running on geographically separated
machines. However, the process of learning about these constructs (or just remembering them)
and creating the requisite code for a distributed application can be very time-consuming. What's
needed is a software infrastructure that assists one in putting classes in a network accessible form
and enables the creation of applications that utilize both ““local" and ~“remote” class instances.
Ideally the use of thisinfrastructure should be as smple as creating and "~publishing”" Web pages.

1lof 13 9/30/98 12:21 PM

In particular, the use of the infrastructure should not require knowledge of the
networking/communications constructs that are are used to implement the infrastructure.

There are a variety of ways that this infrastructure can be created. For example, if the
communication between components is constrained to be through stream connections, than one
can create a modest infrastructure that possesses these features. The classes in the cam.netapp [1]
[2] package provide such an infrastructure. While it is not difficult to create components that
communicate via streams, it's a non-standard programming style. One therefore seeks an
infrastructure that allows code components to communicate via standard method calls. One
infrastructure that providesthisisthe Java RMI package . The generd idea behind the RMI
package isto provide an infrastructure that allows one to create client-server applications. The
client classes execute on alocal machine and communicate over the network with server classes
executing on a remote machine. The client classes have the capability of invoking server class
methods using standard method calls. The default use of this package requires one to explicitly
create classes that implement either a ™ client” structure or a " “server" structure. If one has an
existing application then there can be a bit of programming to get the application into the
appropriate client-server form. In an effort to minimize the amount of programming it takesto get
components into a network accessible form, we describe an alternate infrastructure that supports
code components that communicate via standard method calls.

The approach is based upon "wrapper" classes. The general ideafor using wrapper classesis as
follows: Suppose one has an application with the following structure :

App Aclass

In the application, we consider App the "front”, or client, and Aclass, the "back" or server class.
To keep things simple for now, we assume that App only accesses methods of Aclass. The
challenge isto figure out how, with minimal programming, this application can be made to run in
adigtributed fashion e.g. App executing on one machine and Aclass executing on another.

One means of creating such a distributed application in which App and Aclass are separated is to
have App communicate with another class possessing the same interface as Aclass, but whose
functionality is provided by aremote instance of Aclass. This remote functionality is obtained
through remote method requests sent via a stream connection (implemented using
cam.netapp.NetworkConnection) to a class on a remote machine that invokes the appropriate
methods of an Aclass instance and then returns the results. Thus a distributed version of the
application has the form

20f 13 9/30/98 12:21 PM

30of 13

App Aclass

Internet _ -
AclassCl T AclassSI

g oo

Stream communication wsing

= AclazsClinterface identical carm. netapp MetweorkConnection
to Aclazs interface

Here AclassCl (which stands for Aclass (C)lient (I)mplementation) is the class whose interface is
identical to Aclass and communicates with AclassSI (which stands for Aclass (S)erver
(Hmplementation). AclassSI contains aloca instance of Aclassto obtain its functionality.
AclassCl and AclassSI are the wrapper classes utilized in the creation of this distributed
implementation. Once the wrapper classes are created for Aclass, identical programming
constructs can be use for either local or remote use of an Aclass instance.

The cost of creating a distributed application in this way is the cost of creating the wrapper
classes. Fortunately this construction can be automated and the application
cam.codegen.CreateCl S| does this. Thus, the task of creating a distributed version of an
application involves only a modest number of code changes (a constructor change, and a call
specifying the address and port of the remote instance), as well as the invocation of the
cam.codegen.CreateCl Sl application.

In the following section we present an extended an example where a distributed version of an
application is constructed. In section 3, the nature of the Client Implementation and Server
Implementation classes, and "how they work™ is discussed. Callbacks from the server classto a
client class are possible, and these are described in section 4. In section 5, we discuss how the use
of class interfaces can minimize the amount of code that must change when one switches between
the alocal and aremote class instance. Lastly we discuss the use of "wrappers" with the Java RMI

package.

For thiswork, our primary Java references were the books [3], [4] and [5].

2. An Example

As an example, we consider the creation of an application with the two classes mentioned in the
introduction, App and Aclass. The App class will have amethod called doCal cul ation(. . .)
that invokes an Aclass method addTwo(...). Thus, the App classwill be the"client" class and
Aclass the "server” class.

The starting point is the construction of a purely local implementation. This implementation can
be viewed in Samplel/App.java and Samplel/Aclassjava. The implemenation is as one would

9/30/98 12:21 PM

expect; App contains the data member A -- an Aclassinstance. ThedocCal cul ation(. . .)
method merely invokes A. addTwo(. . .) to obtain the result. The App.main(...) routine tests the
construction. The output from the programis

The result of the calculation = 7 (and should = 7)

The next step consists of creating the wrapper classes for Aclass. Thisisis accomplished by
invoking the the cam.codegen.CreateCl S| application. The interface to the program has the form

[=: Create Cl and 51 Wrapper Classes | _ |Of x| I
Help
Package :
Aclass
Class:

Create netapp Wrappers

[7 Compile After Construction

Y ou must type in the name of the package that the classresidesin (e.g. if it isin package
cam.codegen, then one would type in cam codegen). In this example, Aclassisin the default
package, so one leaves the package field empty. In the Class field one must specify the name of
the class. This program creates the wrapper classes, and, by default, internally invokes the Java
compiler to compile them. If one doesn't want this program to compile the routines after
construction, then clear the Compile After Construction checkbox.

Note that when running the CreateCl Sl application, the target class must reside in a directory that
allows JAVA classes to be loaded; in particular, the concatenation of a directory listed in the
CLASSPATH variable and the package name of the target class must yield adirectory the target
classresidesin.

This result of using cam.codegen.CreateCl Sl is the creation of two classes AclassCl.java and
AclassSl.java.

With the wrapper classes constructed and compiled, the next step isto modify the App classto
utilize the client implementation class AclassCl. Thisversion is contained in the file
Sample2/App.java. The required changes consist of changing the declaration of the variable A
from

Acl ass A;

40f 13 9/30/98 12:21 PM

to
Acl assCl A
and changing the constructor from
A = new Acl ass();
to
A = new Acl assCl ();
try
{
A. set Ver boseFl ag(true);// renove to stop nessages ..
A. createServerl nstance("127.0.0.1",6789);

}cat ch(Exception e)
{System out. println(e.get Message());}

This new code is compiled and then tested by invoking the cam.netapp.ServerM anager, and
running App.main(...). With the verbose mode on, the output from the program has the form:

Net wor kConnection : Setting up Connection

Net wor kConnection : Connecting to [127.0.0.1] Port : 6789

Net wor kConnection : Connected to [127.0.0.1] Start Up Port : 6815
Net wor kConnection : Connected to [127.0.0.1] Server Port : 6816
Net wor kConnection : Connected to [127.0.0.1] Server Port : 6817
Net wor kConnection : Connected to [127.0.0.1] Server Port : 6818
Net wor kConnection : Application AclassSl requested

Net wor kConnection : Renmote Cl ass Found

Net wor kConnection : Remote Class Instantiated

Net wor kConnection : Streans Connected to Renmpte Cl ass
Net wor kConnecti on : Connection Conpl ete

Net wor kConnecti on Starting Renmote Application

Acl assCl : Connection Conpl et €

The result of the calculation = 7 (and should = 7)

At this point, one can test the program working between two machines. To accomplish this one
needs to have App and AclassCl on the client machine and Aclass and AclassSI on the server
machine. The server classes Aclass and AclassSI must reside in a directory where they can be
loaded by the cam.netapp.ServerManager running on the server machine. Also, the address and
port numbers utilized in A. creat eServer I nst ance(. ..) ; method should be set to the server
machine and port where the cam.netapp.ServerManager is running..

Here's a summary of the steps associated with the construction of a distributed application

1. Develop the client and server classlocally. Utilize standard JAV A programming tools and
get the application running.

2. Invoke cam.codegen.CreateCI S| and create the client (Cl) and server (Sl) impementation
classes. Compile these classes (if one doesn't select the compile option of the
cam.codegen.CreateClI Sl application).

50f 13 9/30/98 12:21 PM

3. Modify the client code to utilize the client (ClI) implementation of the server class. Test the
implementation localy (e.g. run aloca cam.netapp.ServerManager and specify the loop
back address (usually 127.0.0.1) as the machine location in the createRemotel nstance(...)
method).

4. Export the server class and its associated server (Sl) implementation class to aremote
machine. Make sure the classes reside in alocation that allows a
cam.netapp.ServerM anager instance to load. them. One needs to change the address and
port number in the createRemotel nstance(...) method called by the client application.

To run the distributed application; start up the cam.netapp.ServerManager on the remote
machine, and then start the client application.

3. How it'sdone

The code in the wrapper classesis just code one would construct “"by hand" if one were directly
using the cam.netapp classes. For example, if one considers the two classes AclassCl.java and
AclassS|.java that are generated, one sees that the client implementation (CI) contains the public
methods of Aclass. For each method in the Cl implementation, a vector of parameters

met hodDat a IS created and transmitted to the corresponding server (Sl) class. The first element of
met hodDat a contains the index of the method, and the remaining elements of the vector contain
the method parameters. All parameters are transformed to Object instances before transmission,
e.g. an int parameter is transformed to an Integer object before being added to the vector of data.

The vector of datais transmitted over a connection established using a
cam.netapp.NetworkConnection instance. There is one single transmission statement;

Os. wri t eObj ect (et hodDat a). Thewri t eObj ect (.. .) method automatically seridizes dl the
elements of the data vector, and then writes the results to its associated stream. On the receiving
end, the server (SI) class has asingle read statement that listens for the vector of method data.
Once this vector is received, the datais unpacked, and the appropriate method of alocal instance
of Aclassiscalled. Every routine in the server implementation creates a return vector that carries
return status, return data, and any exceptions that may have been called. The client
implementation (CI) reads the return data, un-packs it, and returns to the invoking program.

To construct the client (Cl) and server (SI) wrapper classes the CreateCl Sl application uses a
utility class CreateNetAppWrappers. This utility class first loads an instance of Aclass, then uses
Java's class reflection methods (i.e. the methods of java.lang.Class) to determine the public
methods, parameters, return types, etc. and then writes the wrapper class code using this
information.

4. Implementing Callbacks
If an application has "callbacks', that is, the server class has the capability of invoking methods on

the client, then the distributed implementation is a bit more complicated than when callbacks are
not present. In particular, when there are callbacks, the client must act as a server aswell, and

6 of 13 9/30/98 12:21 PM

appropriate communication links must be established for this. In keeping with the philosophy that
the migration from alocal implementation to a distributed implementation should be as smple as
possible, our goa was to have it so minimal programming changes are required when creating a
distributed implementation of an application that possesses callbacks. Thus, the ideaisthat a
programmer creates and debugs an application with callbacks and then creates a distributed
implementation by making a small number of code modifications and by creating appropriate
wrapper classes (classes that are automatically generated) .

As with the creation of distributed applications without callbacks, perhaps the best means of
revealing the procedure and requisite programming constructs is through an example. So,
consider atwo component application of the form used previoudly :

App Aclass

However, in thisversion, Aclass contains areference to App for calbacks, and one method of the
App class (typicaly the constructor) calls an Aclass method to set the reference to App. To
facilitate the conversion to a distributed implementation, we require Aclass set the reference to
App by implementing the cam net app. Set Cl i ent interface.

In the purely local version of the application, the App class constructor has the form

public App()
{

A = new Acl ass();

try{
A setClient((Object)this); // Using the nethod defined by

/1 cam netapp.SetClient to set the
} /] call back
cat ch(Exception e){};

}

while in the Aclass class, the method set Cl i ent (. . .) hastheform

public void setCient(CObject Ob)throws Exception

{
appClient = (App) Ob;

The compl ete codes are contained in the files Sample3/App.java and Sampled/Aclassjava.

Using these constructions gives the Aclass instance the capability of invoking App methods. For
demonstration purposes App contains the methodst est Cal | Back(...) and
printString(...).Aclasscontainsthe method usecCal | Back(. . .). The construction is tested
by having App. mai n(. .) create an App instance and invokethet est Cal | Back(. . .) method.
This method immediately invokes the Aclassusecal | Back(. . .) method which in turn invokes
the client instance pri nt Stri ng(. . .)method. The output from the App. mai n(...) is

The String "Call back Ok" I|ndicates Success

7of 13 9/30/98 12:21 PM

8of 13

Cal | back OK

In adistributed implementation, the existence of a callback requires that the App classact asa
server class. Thus, wrapper classes AppCl and AppSI are required to implement the connection
between Aclass and App. Ultimately, the structure of the distributed application has the form

App Aclass
Internet
AclassCl \/\ AclassSl
Internet
AppSl YA AppCl

The additional wrapper classes consist of AppCl and AppSl, classes that enable the Aclass
instance access (via AppCl methods) the methods of the App instance.

To create a distributed implementation from the local implementation consists of
1. Creating the classes AclassCl, AclassSI, AppCl, AppSl.
2. In App, changing the server type from Aclass to AclassCl.

3. In Aclass changing the callback reference from type App to AppCl. Note that the
set Cient (...)method requires modification as well.

4. Adding System.exit(0) to App. mai n(. . .). If one doesn't do this, then the AppSI instance
remains after App has exited.

The new App constructor has the form

public App()
{

/1 Using local : unconment the next block
[] ###RHHARHHH SRR H RS H SRS H AR R PR

/1 A = new Acl ass();

BHHBHBHHBHBERH B HABH R H B HEBH SR H B HE R H R RH

~ N~~~
~ O~ — —

Using renpte : uncomment the next bl ock
HEHHH AR H AR H AR H R R SRR H AR TR

9/30/98 12:21 PM

90of 13

A = new Acl assCl ();
try

A. set Ver boseFl ag(true);// renove to stop nessages ..
A. createServerl nstance("127.0.0.1",6789);

}cat ch(Exception e)
{System out. println(e.get Message());}

[| BHHBHHBHHBHHBHHBHHBH PR PRSP RSB HH RS R
/1

try{
A setClient((Object)this); // Using the nethod defined by

/] cam net app. Set Cl i ent

}
catch(Exception e){Systemout.println(e);};
}

while Aclass implementation of cam.netapp.setClient(...) now has the form

public void setClient(CObject Ob) throws Exception

{
appClient = (AppCl) Ob;

Sampled/App.java and Sampled/Aclass.java contain the source for the distributed version of the
application.

With these changes, when theset Cl i ent (. . .) method of Aclassisinvoked, then the callback
structure described above is automatically instantiated. (This assumes the AppSl is located on the
client machine and AppCl islocated on the server machine).

The output from the App. mai n(. . .) with the verbose mode set has the form

Net wor kConnection : Setting up Connection

Net wor kConnection : Connecting to [127.0.0.1] Port : 6789

Net wor kConnection : Connected to [127.0.0.1] Start Up Port : 6791
Net wor kConnection : Connected to [127.0.0.1] Server Port : 6792
Net wor kConnection : Connected to [127.0.0.1] Server Port : 6793
Net wor kConnection : Connected to [127.0.0.1] Server Port : 6794
Net wor kConnection : Application AclassSl requested

Net wor kConnection : Renmote Cl ass Found

Net wor kConnection : Remote Class Instantiated

Net wor kConnection : Streans Connected to Rempte Cl ass
Net wor kConnecti on : Connection Conpl ete

Net wor kConnecti on Starting Renmote Application

Acl assCl : Connectl on Conpl et €

The String "Callback Ok" |ndicates Success

Cal | back OK

So, the steps to the creation of a distributed version of a two component application with
callbacks consists of

1. Creating and debugging alocal version of the application, aversion in which the
cam net app. Set Cl i ent interface is used by the client class to set the callback reference.

9/30/98 12:21 PM

2. Generation of the client (ClI) and server (Sl) classes for both components.

3. Modification both components to use the client (Cl) classes.

5. Using Interfacesto M inimize Code M odification

As described, the process of creating a distributed implementation from alocal implementation
requires code changes. While these are few, the fact is that one must change and recompile the
code. Thisis adrawback, because it means that one has to worry about two versions of an
application and not just one. By investing alittle more time in the local implementation, one can
make it so that the conversion to the distributed version requires no re-compilation; the use of a
remote class instance can be enabled at run-time.

The ideaisto define an interface class that contains the public methods (excluding constructors
and static methods) for the server class. One then has the server class and its associated client
implementation (CI) implement this interface. In the client class, one programs using an interface
class reference, and then dynamically loads either the server class or its client interface depending
upon if one wants alocal or a distributed implementation. The structure for the sample two
component application involving App and Aclassis the following

Aclass Aclass

App Aclasslf

Internet .
AclassCI \/‘ AclassSl|

Aclass uses Aclazslf interface
instance

Aclass and AclkassCl both
implement the Aclassif interface.

At run-time, one or the ather is
dynamically loaded.

As an example, an interface describing the methods of Aclass used in the first example
(Samplel/Aclass.java) has the following form

public interface Acl asslf

public int doCal culation(int D);

Now, by having Aclass implement this interface, and writing the code in App to only use this
interface, one can create an App class that does not need to be recompiled when the distributed

10of 13 9/30/98 12:21 PM

implementation is used. (After creating Aclass so that it implements the Aclasslf interface, then
AclassCl and AclassSI are generated using cam.codegen.CreateClI SI. The program
cam.codegenCreateCl S| will automatically have AclassCl implement the Aclassif interface if
Aclass does.)

Sample5/App.java and Sampleb/Aclass.java contain the implementations of App and Aclass that
utilize this construction.

Of interest in these classes is the mechanism by which either the local or remote instance of Aclass
isinstantiated by the App class.

The App constructor has the following form, exhibiting how this is accomplished with dynamic
loading;

public App(bool ean | ocal Fl ag)
{

String serverCl assName "Acl ass";
String serverCl assNameCl "Acl assCl ";
String address "127.0.0.1";

i nt port 6789;

Class theClass = null;
bj ect theObject = null;
if(local Flag) // local inplenmentation
{

try
{
t heCl ass = Cl ass. for Name(server Cl assNane) ;
theObj ect = theC ass.new nstance();
cat ch(Excepti on ex)
{Systemout.println("Class Not Found : " + ex.getMessage());};
else // distributed inplenmentation
{
try
t heCl ass = Cl ass. for Nanme(server Cl assNanmeCl) ;
theObj ect = theC ass.new nstance();
catch(Excepti on ex)
{Systemout.println("Class Not Found : " + ex.getMessage());};
/'l request the renote instance
try

((cam netapp. Clinterface)theCbject).setVerboseFl ag(true);
((cam netapp. Clinterface)theCbject).createServerlnstance(address, port);

catch(Exception e){Systemout.println(e);};
}

/1
/] Cast the object to type Acl asslf
/1
A = (Acl asslf)theObject;
}

S0, depending on the flag passed into the App constructor, either alocal or a distributed
implementation is created. It isimportant to note that the method cr eat eSer ver I nstance(. . .)

110f 13 9/30/98 12:21 PM

is accessed viathe interface cam net app. Cl i nt er f ace. The use of the cam.netapp.Clinterface
interface ensures that the initialization code does not require the any explicit reference to the
AclassCl class. (Thisisimportant because this ensures that the existence of AclassCl is not
necessary for App to compile)

Here are the results obtained with App. mai n(. . .)

Local Results
The result of the calculation = 7 (and should

7)

Di stributed Results
The result of the calculation = 7 (and should = 7)

So, if oneisusing the NetApp wrapper constructs, in order to create applications in which the
trangition from alocal to a distributed implementation requires minimal re-coding one needs to

1. Create both a server class and a server class interface that the server class implements.
2. Haveadl client applications utilize the server interface reference for all server method calls

3. Initidize the server instance by dynamically loading the server class or the server class client
(CI) implementation by name.

The cost of carrying out thiswork isthat of keeping the server class and the server classinterface
synchronized. Thisis asource of errors, but, fortunately, the compiler typically lets you know if
they are not synchonized.

6. Using Wrappersand Java RM |

Our main emphaisis has been on the construction and use of wrapper classes that utilize the
cam.netapp package to provide the underlying communication link, however, it is aso possible to
use the same techniques to create wrapper classes that utilize the Java RMI package as the
communications link. In particular, the application cam.codegen.CreateRM| takes an existing
class and creates the appropriate wrapper class and wrapper interface so that it isin the “server"
form required by the Java RMI interface.

Consider again our first example, the application whose components are contatined in
Samplel/App.java and Samplel/Aclass.java. The creation of a distrubuted version that uses the
Java RMI package requires

e The creation of a server interface and server wrapper class for the Aclass component.

e Modification of the App client to use the Aclass server interface class.

The application cam.codegen.CreateRMI creates the required server classes. When applied to

Aclass, the application creates the server wrapper class AclassRS.java ((R)MI (S)erver) and the
server interface AclassRI.java ((R)MI (I)nterface). Aswith all RMI server classes, the JDK rni ¢
utility programis applied to AclassRS to create the stub and skeleton classes AclassRS_Stub and

12 of 13 9/30/98 12:21 PM

AclassRS Skdl.

The interface class, AclassRI.java, extends java.rmi.Remote and contains al the public methods of
Aclass. The interface is not identical to that of Aclass, because each method throws
java.rmi.RemoteExceptions (as required of any class that extends extends java.rmi.Remote). The
server class AclassRS.javaimplements the AclassRI interface and obtainsits functiondity by
invoking the appropriate methods of an Aclass instance that AclassRS contains. Also included in
AclassRSistherequisite mai n(. . .) invocation that sets the SecurityManager and registers the
class with the rmiregistry.

After this packaging of Aclassinto a"server" form, the client appliction App must be modified to
use areference of type AclassRI. In addition to changing the data member declaration, the
constructor requires modification and al AclassRI method calls must placed within atry-catch
block The modificed code is presented inSamples6/App.java.

Prepretory to running the distributed application requires appropriately placing class components
on the local and remote machine. The location of the filesis given in the following table

| Local | Remote
| |

|App.class (uses AclassRI) /Aclass.class
|AclassRI.class /AclassRS.class
|AclassRS_Stub.class /AclassRS_Skel.class

Oncethefilesarein place, one startsther i r egi st r y on the remote machine, and then starts an
instance of AclassRS (e.g. by running a statement of the formj ava Acl assRS). The client
application App isthen invoked and it communicates AclassRS on the remote machine.

References

[1] Anderson, C.R., cam.netapp Package Documentation
www.math.ucla.edu/~anderson/JAV Aclass CAM Java.html, 1997

[2] Anderson, C.R.,Creating Distributed Applications with the cam.netapp Package, UCLA Dept.
of Mathematics CAM Report 98-39 1998.

[3] D.J. Berg and J.S. Fritzinger, Advanced Techniques for Java Developers, Wiley & Sons.,New
York, 1997.

[4] M. Campione, K. Walrath, The Java Tutorial Second Edition, Addison-Wesley, Reading
M assachusetts, 1998.

[5] D. Flanagan, Java in a Nutshell, O'Reilly, Sebastapol Ca., 1997.

130f 13 9/30/98 12:21 PM

