
Putting a Java Interface on your C, C++, or Fortran
Code

Abstract : The purpose of this report is to document some of the technical aspects of creating Java interfaces
for codes written in languages other than Java. We outline a procedure where one separates the construction of
the interface from the external codes with the introduction of an intermediate "wrapper" class. This
intermediate class serves to isolate user interface details from the details of calling external routines. This
intermediate class also facilitates the incorporation of external routines into Java based systems for distributed
computing and/or visual programming.

Contents

Considerations Before You Begin
Introduction
The process of creating a Java interface to C, C++ and Fortran routines.
The program written in "another" language.
The Java class that encapsulates the C, C++ or Fortran code components.
The Java interface.
References
Source Files

Chris Anderson
Department of Mathematics
UCLA Los Angeles, CA 91555
7/15/97

These software components were developed in conjunction with the research supported by Air Force Office of
Scientific Research Grant F49620-96-I-0327 and National Science Foundation/ARPA Grant
NSF-DMS-961584

Introduction

While people are debating whether or not Java is good for computationally intensive tasks,
the fact is that C, C++ and Fortran are the primary languages for those who do
scientific/technical computing. It also seems unlikely that this situation will change in the
near future. Unfortunately, C, C++ and Fortran do not contain (as Java does) standardized
and platform independent constructs for creating user interfaces, managing threads,
networking, and a variety of other tasks associated with creating "applications". Thus,
there is interest in creating applications in which the user interface, or other "application
packaging", is written in Java, but the core computational component is written in C, C++,
or Fortran (see Figure 1). The purpose of this document is to describe, principally by
means of an extended example, the process of creating a Java interface for a program
written in C, C++ or Fortran.

1 of 9

In order to create applications which have the form indicated in Figure 1, one needs to
know how to write Java interfaces and how to call routines written in C, C++ and Fortran
from Java. The process of writing a Java interface is well described in a variety of books
[1][2][3] [4] and we will assume that the reader is capable of writing a modest Java
interface which accepts input and displays output to a user. The task of calling routines
written in C, C++ and Fortran from Java comes under the heading of implementing and
using "native" methods. Here too, other documents [1][7] describe the process of
interfacing Java to other languages. While, for completeness, we will outline the steps
required to create and implement Java classes with native methods, we assume that the
reader has implemented a Java class that has at least one native method procedure in it
(e.g. the "Hello World" example of [7]).

In one aspect, this report is the presentation of an extended example demonstrating how
this knowledge of writing Java interfaces and implementing native methods can be
combined to create a Java/"other language" application. In addition to providing samples
of the mechanisms for data exchange, the example also reveals the choices we made (and
choices you will have to make) concerning the dividing line between the Java interface and
routines written in C, C++ or Fortran. Our example concerns the creation of a Java
interface for a program which solves the heat equation in a two dimensional rectangular
region. Examples in C++ and Fortran are given (as is readily seen the C++ example is very
close to what might be composed in C).

In the first section we outline the process that we follow for creating applications of the
type described by Figure 1. In the second section we present the example which will form
the basis of our discussion, and in the third and fourth sections we detail the construction

2 of 9

of the Java classes which form the primary components of the application.

The process of creating a Java interface to C, C++ and Fortran routines

The process that we use for creating Java interfaces consists of the three steps indicated in
figure 2.

A noticeable feature of the process is that we utilize three steps, rather than two. One may
wonder about the need for the intermediate step; that of writing an intermediate class that
``wraps'' the C, C++ or Fortran code. Originally we didn't have three steps, but adopted
this practice for several reasons:

It facilitated having the external code run as a separate thread. If one is running a
computationally intensive task, then this allows the task to be executed without
``freezing'' the interface.
By using this intermediate class we have isolated that component of the application
which contains inter-language calls. Since the inter-language calling procedure for
Java is evolving, this allows us to accommodate any changes in the inter-language
procedures more easily. Additionally, by not embedding this code within a user
interface, we also allow the user interface to change independently (this is important
because the Java user interface classes are evolving as well).
Lastly, and no less importantly, this class provides an encapsulation of the external
routines which facilitates their incorporation in a visual programming system or a
software infrastructure which supports distributed computing.

The example program written in "another" language.

The starting point for the process of writing a Java interface is to have a program or a
selected set of code components that one wishes to write interfaces for. Rather than

3 of 9

discuss the process of writing interfaces in an abstract way, we discuss the process of
writing interfaces for a specific example. The example program is one that computes the
evolution of the temperature of a rectangular plate. The main driver routine is given below
(as well as in the file tempCalc.cpp); the include file for the functions which the main
routine calls are given in tempCalcRoutines.h and the source for these routines is given in
tempCalcRoutines.cpp.

In the first part of the main routine, the problem and run parameters are set, memory is
allocated and the temperature distribution is initialized. A time stepping loop is then
executed. In this loop, the temperature of the plate is evolved in time increments of size dt
by calling the routine evolveTemperature(...) and at some predetermined number of time
steps the temperature distribution is output. (In this case written to a file tempOut.dat).

Even though the temperature values are associated with a two-dimensional set of nodes
covering the plate, we allocate and pass one-dimensional arrays of values. This was done
because the standard method for exchanging data with other languages is through
one-dimensional arrays; Java is no exception. Using one-dimensional sets of data values
does not preclude using a two-dimensional array structure to access the data. The routines
create2dArrayStructure(...) and destroy2dArrayStructure(...) in tempCalcRoutines.cpp
demonstrate how one can create a two-dimensional array structure which access the data
allocated as a one dimensional array.

#include <iostream.h>
#include <fstream.h>
#include "tempCalcRoutines.h"
void main()
{
//
// Set Problem parameters
//
 double diffusivity = 0.1;
 double a = 0.0; double b = 1.0;
 double c = 0.0; double d = 1.0;
//
// Set Runtime parameters
//
 long m = 10;
 long n = 20;
 long nSteps = 100;
 long nOut = 10;
 double dt = 0.01;
//
// Allocate space for solution and work arrays
//
 double* Tarray = new double[m*n];
 double* workArray = new double[m*n];
//
// Open output file
//

4 of 9

 ofstream Fout("tempOut.dat");

 initializeTemperature(Tarray,m,n,a,b,c,d);
 double time = 0.0;

 int i; int j;

 for(i = 1; i <= nSteps; i++)
 {
 evolveTemperature(Tarray,m,n,a,b,c,d,dt,diffusivity,workArray);
 time = time + dt;

 if((i%nOut)== 0)
 {
 cout << " Step " << i << endl; // print out step to screen

 Fout << m << " " << n << endl; // output to file tempOut.dat ...
 Fout << time << endl;
 for(j = 0; j < m*n; j++){Fout << Tarray[j] << endl;}
 }

 }
 delete [] Tarray;
 delete [] workArray;
}

This program is typical of many computationally intensive applications; data is allocated,
parameters and values are initialized, and then a time stepping loop is executed. As the
calculation proceeds data is output periodically.

The Fortran version of this program is given in tempCalc.f and the supporting routines are
given in tempCalcRoutines.f. One may notice that the C++ program is nearly identical to
the Fortran program and does not use any of the object oriented features of C++ (i.e. it
does not utilize classes). This was done intentionally so that the code would serve as an
example of codes which are likely to be used (and/or written) by the majority of those
involved in scientific/technical computation.

The Java class that encapsulates the C, C++ or Fortran codes
components.

The second step in the process of creating an interface is to create a Java wrapper class
that encapsulates the C, C++ or Fortran code components. It is in this class that the
connection between the external routines and the corresponding Java routines is made.
This class is also responsible for "loading" the external routines.

Essentially, this class replaces the main() routine. In this regard the class allocates the
required arrays, contains the parameters as data members and also contains the methods
(declared native) which are invoked by the main() driver routine (the initializeTemperature

5 of 9

and evolveTemperature routines).

To facilitate the execution of the program as a separate thread, this class implements the
Runnable interface (it implements a run() method). In this run() method, we have changed
the output process to be one which displays a color contour plot of the data, rather than
write the output to a file. The requisite Java classes are contained in the files
ColorContourPlot.java, ColorContourCanvas.java and ContourResolutionDialog.java.

Lastly this routine also includes a main routine of it's own for testing purposes. The
complete code is given in TempCalcJava.java.

Since this routine has native methods, one must create the dynamically linked library
(DLL) or shared library that contains their implementations. As outlined in the discussions
on implementing native methods [1][7], this is a multi-step process:

1. The class TempCalcJava.java is compiled. Even though the native methods are not
implemented, you must compile the Java class containing the native methods before
performing the next step.

2. The command javah is applied to TempCalcJava.class. This means executing
"javah -jni TempCalcJava". The result of this command is the creation of the
file TempCalcJava.h. Since we are using the native interface specification of Java
1.1, the javah command must be the one distributed with the JDK 1.1.

3. The functions contained in TempCalcJava.h are "implemented". In this regard our
task consists of accessing the data contained within the Java arrays and passing it to
the corresponding C++ (or Fortran routines). The implementation of these routines
is given in TempCalcJava.cpp. (Note that one can select the Fortran implementation
by defining __FORTRAN_BUILD__ in the compilation process.)

4. The routines in TempCalcJava.cpp along with those in tempCalcRoutines.cpp are
compiled and a dynamically linked library (or a shared library) is created. The name
of this library must coincide with the name of the file (without the .dll or .so
extension) which occurs in System.load or System.loadLibrary command within the
static initializer for the class. (For some notes on the compilation process see Native
Method Compilation Notes.)

See "Native Method Implementation Process" for a diagram of these steps.

At this point, if the native method implementation process is successful, one should be
able to run a "command line" version of the program by executing the main routine of the
class i.e. just execute "java TempCalcJava". Problems which occur at this point are often
caused by incorrect, or non-specification, of the path which is searched for the library
containing the native method implementation. On PC/Windows platforms the PATH

6 of 9

variable must include the directory containing the native method implementation dll. On
UNIX machines running solaris the LD_LIBRARY_PATH variable must include the
directory containing the native method implementation shared library.

The Java Interface

The third step in writing the interface is to write the Java class that implements the
interface. Minimally this means creating a Java application that possesses program control
buttons and fields for data input. The interface is displayed below, and the associated Java
code is contained within TemperatureApp.java.

This user interface was constructed using tools that generate Java 1.0.2. However, since
our implementation of native methods is Java 1.1 based, after the initial construction, we
compiled and worked with this code using the Java 1.1 compiler. In the Java 1.1
compilation step one must specify the flag "-deprication" and put up with all the warnings
that are generated. Hopefully the interface construction tools will support Java 1.1 soon
and these nuisances will disappear.

 In looking over the Java code, one should take note that the computationally intensive
part of the application is done as a separate thread [6]. Specifically, within the code which

7 of 9

gets executed when the Run button is hit (the code fragment is given below) we create
threads for the separate components of the application--- one thread for the calculation
component and one thread for the color contour plot. The calculation component thread is
given a lower priority, so that on machines whose implementation of the Java virtual
machine doesn't time-slice among equal priority threads, the computationally intensive
component will not cause the user interface to "freeze".

void RunButton_Clicked(Event event)
{
 *
 *
 *
//
// Set up and start the threads for the contour plot and the
// calculation
//
 Thread current = Thread.currentThread(); // capture current thread

 Thread contourThread = new Thread(temperatureRun.contourPlot);
 contourThread.start();

 TempRunThread = new Thread(temperatureRun);
 TempRunThread.setPriority(current.getPriority() -1);
 TempRunThread.start();
}

The color contour plot that results from the execution of the program is given below

8 of 9

References

1. Campione, M. and Walrath, K., "The Java Tutorial: Object-Oriented Programming
for the Internet", Addison-Wesley, 1996.

2. Cornell, G. and Horstmann, C., "Core Java", SunSoft Press, 1996.
3. Daconta, C., "Java for C/C++ Programmers", Wiley Computer Publishing, 1996.
4. Flanagan, D. "Java in a Nutshell", O'Reilly and Associates, 1996.
5. Jackson, J. and McClellan, A., "Java by Example", SunSoft Press 1996.
6. Oaks, S. and Wong, H., "Java Threads", O'Reilly and Associates, 1997.
7. Campione, M. and Walrath, K, Integrating Native Code and Java Programs

9 of 9

