Math 3A Summer 2011, Homework 1
Due June 23 In your TA section .
- Compute the limits of the following sequences using the limit laws and any limits we already know (e.g. $\lim_{n\rightarrow\infty}\frac{1}{n}=0$):
- $\frac{n}{n+1}+\frac{1}{n^{2}}$
Answer:
\begin{align*} \lim_{n\rightarrow\infty} & \left(\frac{n}{n+1}+\frac{1}{n^{2}}\right)
=\lim_{n\rightarrow\infty}\frac{n}{n+1}+\lim_{n\rightarrow\infty}\frac{1}{n^{2}}\\
& =\lim_{n\rightarrow\infty}\frac{1}{1+\frac{1}{n}}+\left(\lim_{n\rightarrow\infty}\frac{1}{n}\right)\left(\lim_{n\rightarrow\infty}\frac{1}{n}\right) \\
& =\frac{\lim_{n\rightarrow\infty} 1}{\lim_{n\rightarrow\infty}(1+\frac{1}{n})} +0\cdot 0 \\
& = \frac{1}{\lim_{n\rightarrow\infty}1+\lim_{n\rightarrow\infty}\frac{1}{n}}=\frac{1}{1}=1\end{align*}
- $\frac{4n^{2}-3}{3n^{2}}$
- $\frac{n^{2}+2^{-n}}{2n^{2}}$
Answer:
\begin{align*} \lim_{n\rightarrow\infty} \frac{n^{2}+2^{-n}}{2n^{2}} &
=\lim_{n\rightarrow\infty}\left(\underbrace{\frac{n^{2}}{2n^{2}}}_{=\frac{1}{2}}+\frac{2^{-n}}{2n^{2}}\right)
=\lim_{n\rightarrow\infty}\frac{1}{2}+\lim_{n\rightarrow\infty}(2^{-n}\cdot \frac{1}{2}\cdot \frac{1}{n^{2}} ) \\
&
=\frac{1}{2}+(\lim_{n\rightarrow\infty}2^{-n})(\lim_{n\rightarrow\infty} \frac{1}{2})(\lim_{n\rightarrow\infty}\frac{1}{n^{2}})
=\frac{1}{2}+0\cdot \frac{1}{2}\cdot 0 = \frac{1}{2}\end{align*}
- $\left(\frac{1}{n^{3}}+3\right)(2+2^{-n})$
- $\frac{2^{n}+2^{-n}}{2^{n}-2^{-n}}$
- Evaluate the following limits using any limit law we've covered:
- $\lim_{x\rightarrow 1} \frac{x^{2}-1}{x-1}$.
- $\lim_{x\rightarrow 0} \frac{e^{2x}-1}{e^{x}-1}$ (Hint: think of what you did in the previous problem)
- $\lim_{x\rightarrow 0} \frac{x^{-2}}{x^{-2}+1}$
- $\lim_{x\rightarrow 0} \frac{\sqrt{x^{2}+4}-2}{x}$
Answer:
\begin{align*}
\lim_{x\rightarrow 0}\frac{\sqrt{x^{2}+4}-2}{x} &
=\lim_{x\rightarrow 0}\frac{\sqrt{x^{2}+4}-2}{x} \frac{\sqrt{x^{2}+4}+2}{\sqrt{x^{2}+4}+2}
=\lim_{x\rightarrow 0}\frac{(x^{2}+4)-4}{x(\sqrt{x^{2}+4}+2)} \\
& =\lim_{x\rightarrow 0}\frac{x^{2}}{x(\sqrt{x^{2}+4}+2)}
=\lim_{x\rightarrow 0}\frac{x}{\sqrt{x^{2}+4}+2}\\
& =\frac{\lim_{x\rightarrow 0}x}{\lim_{x\rightarrow 0}\sqrt{x^{2}+4}+2}
=\frac{0}{\sqrt{0+4}+2}=0\end{align*}
- $\lim_{x\rightarrow -5}\frac{x+5}{x^{2}+x-20}$
- Let $h(x)$ be the function that rounds down numbers, e.g. $h(1.5)=1$, $h(2)=2$, $h(\pi)=3$.
- Compute $\lim_{x\rightarrow 10^{-}}h(x)$ and $\lim_{x\rightarrow 10^{+}}h(x)$.
Answer
Note that if $x$ is close and to the right of the value $10$, then $h(x)=10$, hence
\[\lim_{x\rightarrow 10^{+}}h(x)=\lim_{x\rightarrow 10^{+}}10=10,\]
since taking the right-hand limit of $h(x)$ means we are letting $x$ tend to $10$ from the positive (i.e. the right) side of $10$. For $x$ close to $10$ but on the left of $10$, $h(x)=9$ (e.g. $h(9.991)=9$), thus
\[\lim_{x\rightarrow 10^{-}}h(x)=\lim_{x\rightarrow 10^{-}}9=9.\]
- Show that $h(x)$ is continuous at $x=\frac{10}{3}$.
(Hint: think of a simple formula for $h(x)$ when $x$ is in $(3,4)$).
Answer: If $x$ is tending to $\frac{10}{3}$, it is eventually between 3 and 4, hence $h(x)=3$ always, thus $\lim_{x\rightarrow \frac{10}{3}}h(x)=\lim_{x\rightarrow \frac{10}{3}}3=3=h(\frac{10}{3})$, thus $h$ is continuous at $x=\frac{10}{3}$.
- Show that $f(x)=|x|$ is continuous at every point in $\mathbb{R}$. (Hint: verify that $\lim_{x\rightarrow c}f(x)=f(c)$ in 3 cases: $c>0$, $c<0$, and $c=0$. For the first two cases, use the fact that the functions $g(x)=x$ and $h(x)=-x$ are continuous everywhere; for the last, show that the left and right hand limits agree.)
Answer:
If $c>0$, then if $x$ is close to $c$, it is also bigger than zero and hence $|x|=x$, so we have
\[\lim_{x\rightarrow c}|x|=\lim_{x\rightarrow c}x=c=|c|.\]
Here, we just used the fact that the function $x$ is continuous at every point, so $\lim_{x\rightarrow c}x=c$. Similarly one can show the same thing for $c<0$. For $c=0$, note that
\[\lim_{x\rightarrow 0^{-}}|x|=\lim_{x\rightarrow 0^{-}}-x=-0=0\]
since we are taking the limit as $x\rightarrow 0$ from the negative side, so $x<0$ and hence $|x|=-x$. Similarly, one can show $\lim_{x\rightarrow 0^{+}}|x|=0$, thus the left and right hand limits coincide and they both equal $f(0)=|0|$. Hence, $\lim_{x\rightarrow 0}|x|=|0|$ and thus $|x|$ is continuous at 0, and we have checked all possible values of $c$, so $|x|$ is continuous everywhere.
- Find the values of $x\in\mathbb{R}$ where the following functions are continuous, using any of the rules we have for combining continuous functions.
- $f(x)=5x^{2}+15x+10$
- $g(x)=\cos\left(\frac{1}{x+1}\right)$
- $\log(1-|x|)$
Answer:
$\log y$ is defined only for $y>0$, hence $\log(1-|x|)$ is defined only when $1-|x|>0$, i.e. $|x|<1$. Since $|x|$ is continuous everywhere (by a previous problem), so is $1-|x|$, hence $\log(1-|x|)$ is continuous wherever it is defined, i.e. for $|x|<1$, or in set notation, it is continuous and defined on $(-1,1)=\{x:-1$\tan 2\pi x$
- For each function $f$ below and given point $c$, find a value for $f(c)$ so that $f$ is continuous at $c$.
- $f(x)=\frac{x^{2}-16}{x+4}$, $c=4$
- $f(x)=\frac{x^{2}-3x+2}{x-2}$, $c=2$.
Answer: Note that
\[\lim_{x\rightarrow 2}f(x)=\lim_{x\rightarrow 2}\frac{x^{2}-3x+2}{x-2}=\lim_{x\rightarrow 2}\frac{(x-2)(x-1)}{x-2}
=\lim_{x\rightarrow 2}(x-1)=2-1=1,\]
thus if we pick $f(x)=1$, we have $\lim_{x\rightarrow 2}f(x)=1=f(1)$, thus $f$ is continuous at $1$.