Distal and non-distal ordered abelian groups

Allen Gehret
Joint with Matthias Aschenbrenner and Artem Chernikov

University of California, Los Angeles

allen@math.ucla.edu

University of Notre Dame Model Theory Seminar
December 5, 2017
Convention: \mathbb{M} is a first order structure, possibly highly saturated.

Definition

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is **A-indiscernible** if for all $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$ from I we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$.
Indiscernible sequences

Convention: \mathbb{M} is a first order structure, possibly highly saturated.

Definition

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is **A-indiscernible** if for all $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$ from I we have $a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}$

Example

- A strictly increasing sequence (q_n) in $(\mathbb{Q}, <)$
- A sequence (a_n) of algebraically independent numbers in $(\mathbb{C}; 0, 1, +, -, \cdot)$, for example, $(\exp(\sqrt{p_n}))$, where $p_n = n$th prime.
Indiscernible sequences

Convention: \mathbb{M} is a first order structure, possibly highly saturated.

Definition

A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is \mathcal{A}-indiscernible if for all $i_1 < \cdots < i_m$ and $j_1 < \cdots < j_m$ from I we have $a_{i_1} \cdots a_{i_m} \equiv_{\mathcal{A}} a_{j_1} \cdots a_{j_m}$

Example

- A strictly increasing sequence (q_n) in $(\mathbb{Q}, <)$
- A sequence (a_n) of algebraically independent numbers in $(\mathbb{C}; 0, 1, +, -, \cdot)$, for example, $(\exp(\sqrt{p_n}))$, where $p_n = n$th prime.
The non-independence property (NIP)

Definition (for monster model \mathbb{M})

\mathbb{M} is NIP iff for every formula $\varphi(x, y)$, every indiscernible sequence $(a_i)_{i \in I}$ from $\mathbb{M} \models x$ and every $b \in \mathbb{M} \models y$, there is $\epsilon \in \{0, 1\}$ such that eventually $\models \varphi(a_i, b)^\epsilon$.
The non-independence property (NIP)

Definition (for monster model \mathcal{M})

\mathcal{M} is NIP iff for every formula $\varphi(x, y)$, every indiscernible sequence $(a_i)_{i \in I}$ from $\mathcal{M}^{|x|}$ and every $b \in \mathcal{M}^{|y|}$, there is $\epsilon \in \{0, 1\}$ such that eventually $\models \varphi(a_i, b)^\epsilon$.

Example

The asymptotic couple $(\Gamma_{\text{log}}, \psi)$ of the field of logarithmic transseries.
The non-independence property (NIP)

Definition (for monster model \mathcal{M})

\mathcal{M} is NIP iff for every formula $\varphi(x, y)$, every indiscernible sequence $(a_i)_{i \in I}$ from $\mathcal{M}^{|x|}$ and every $b \in \mathcal{M}^{|y|}$, there is $\epsilon \in \{0, 1\}$ such that eventually $\models \varphi(a_i, b)^\epsilon$.

Example

The asymptotic couple (Γ_{\log}, ψ) of the field of logarithmic transseries.
More examples of NIP theories

forking and dividing

Map of the Universe

Nice Properties of Theories

<table>
<thead>
<tr>
<th>Property</th>
<th>ω-stable</th>
<th>superstable</th>
<th>stable (NOP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>strongly minimal</td>
<td>o-minimal</td>
<td>dp-minimal</td>
<td>NIP</td>
</tr>
<tr>
<td>NIP</td>
<td>supersimple</td>
<td>simple (NTP)</td>
<td>NSOP</td>
</tr>
<tr>
<td>NSOP$_1$</td>
<td>NTP$_1$</td>
<td>NTP$_2$</td>
<td>NSOP$_{\infty}$</td>
</tr>
<tr>
<td>NSOP$_3$</td>
<td>NSOP$_4$</td>
<td>NSOP$_{\infty}+1$</td>
<td>NSOP$_{\infty}$</td>
</tr>
</tbody>
</table>

Click a property above to highlight region and display details. Or click the map for specific region information.

NIP (dependent)

Examples

- $(\mathbb{Q}^n, <_1, \ldots, <_n)$
- $(\mathbb{R}, +, 0, 1, <)$

Contains:

- dp-minimal
- o-minimal
- strongly minimal
- stable
- superstable
- ω-stable

Questions? Suggestions? Corrections? email me: gconant@nd.edu

References

Update Log

Features Displaying Poorly?
Stable structures

Definition

A sequence \((a_i)_{i \in I}\) from \(\mathbb{M}^n\) is **totally indiscernible** (over \(A\)) if for all distinct \(i_1, \ldots, i_m\) and distinct \(j_1, \ldots, j_m\) from \(I\) we have

\[a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m} \]
Definition

A sequence \((a_i)_{i \in I}\) from \(\mathbb{M}^n\) is **totally indiscernible (over \(A\))** if for all distinct \(i_1, \ldots, i_m\) and distinct \(j_1, \ldots, j_m\) from \(I\) we have
\[
a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}
\]

Definition (for monster)

\(\mathbb{M}\) is **stable** if every indiscernible sequence is totally indiscernible.
Stable structures

Definition
A sequence $(a_i)_{i \in I}$ from \mathbb{M}^n is **totally indiscernible (over A)** if for all distinct i_1, \ldots, i_m and distinct j_1, \ldots, j_m from I we have
\[
a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}
\]

Definition (for monster)
\mathbb{M} is **stable** if every indiscernible sequence is totally indiscernible.

Slogan: stable means that everything in sight is immune to being linearly ordered in any way

Allen Gehret (UCLA)
Distal and non-distal ordered abelian groups
Notre Dame MT Seminar
Stable structures

Definition
A sequence \((a_i)_{i \in I}\) from \(\mathbb{M}^n\) is **totally indiscernible (over \(A\))** if for all distinct \(i_1, \ldots, i_m\) and distinct \(j_1, \ldots, j_m\) from \(I\) we have
\[
a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}
\]

Definition (for monster)
\(\mathbb{M}\) is **stable** if every indiscernible sequence is totally indiscernible.

Slogan: stable means that everything in sight is immune to being linearly ordered in any way

Example
ACF, every abelian group, infinite set, DCF
Stable structures

Definition
A sequence \((a_i)_{i \in I}\) from \(\mathbb{M}^n\) is **totally indiscernible** (over \(A\)) if for all distinct \(i_1, \ldots, i_m\) and distinct \(j_1, \ldots, j_m\) from \(I\) we have
\[
a_{i_1} \cdots a_{i_m} \equiv_A a_{j_1} \cdots a_{j_m}
\]

Definition (for monster)
\(\mathbb{M}\) is **stable** if every indiscernible sequence is totally indiscernible.

Slogan: stable means that everything in sight is immune to being linearly ordered in any way

Example
ACF, every abelian group, infinite set, DCF
Examples of stable structures

Map of the Universe

Nice Properties of Theories

- \(\omega \)-stable
- superstable
- stable (NOP)
 - strongly minimal
 - o-minimal
 - dp-minimal
- NIP
- supersimple
- simple (NTP)
- NSOP
- NSOP_n
- NSOP_{n+1}
- NSOP_\omega

Click a property above to highlight region and display details. Or click the map for specific region information.

stable (NOP)

- infinitely refining equivalence relations
- a strictly stable superflat graph
- infinitely cross-cutting equivalence relations
- DCF_p
- free group on \(n > 1 \) generators
- SCF_p
- \((\mathbb{Z}^d, +, 0) \)

Definition

Questions? Suggestions? Corrections? email me: gconant@nd.edu

References

Update Log

Allen Gehret (UCLA) Distal and non-distal ordered abelian groups Notre Dame MT Seminar 6 / 14
Definition (for monster)

We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

1. $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
2. $(a_i)_{i \in I_1 + I_2}$ is d-indiscernible,

then $(a_i)_{i \in I}$ is d-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.
Distal structures

Definition (for monster)

We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

1. $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
2. $(a_i)_{i \in I_1 + I_2}$ is d-indiscernible,

then $(a_i)_{i \in I}$ is d-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

Example

- Any o-minimal theory, e.g. DLO, ODAG, RCF
Distal structures

Definition (for monster)
We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

1. $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
2. $(a_i)_{i \in I_1 + I_2}$ is d-indiscernible,

then $(a_i)_{i \in I}$ is d-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

Example
- Any o-minimal theory, e.g. DLO, ODAG, RCF
- $(\mathbb{R}, <, +, \cdot, 0, 1, 2\mathbb{Z})$ is distal, whereas $(\mathbb{R}, <, +, \cdot, 0, 1, 2\mathbb{Q})$ is not distal (Hieronymi, Nell, 2017)
Distal structures

Definition (for monster)
We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

1. $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
2. $(a_i)_{i \in I_1 + I_2}$ is d-indiscernible,

then $(a_i)_{i \in I}$ is d-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

Example
- Any o-minimal theory, e.g. DLO, ODAG, RCF
- $(\mathbb{R}, <, +, \cdot, 0, 1, 2\mathbb{Z})$ is distal, whereas $(\mathbb{R}, <, +, \cdot, 0, 1, 2\mathbb{Q})$ is not distal (Hieronymi, Nell, 2017)
Distal structures

Definition (for monster)

We say that \mathbb{M} is distal if for every tuple d, for every indiscernible sequence $(a_i)_{i \in I}$ from \mathbb{M}^p such that

1. $I = I_1 + (c) + I_2$, I_1 nonempty without greatest element, I_2 nonempty without least element,
2. $(a_i)_{i \in I_1 + I_2}$ is d-indiscernible,

then $(a_i)_{i \in I}$ is d-indiscernible.

Slogan: everything in sight is secretly governed by linear order(s) existing somewhere.

Example

- Any o-minimal theory, e.g. DLO, ODAG, RCF
- $(\mathbb{R}, <, +, \cdot, 0, 1, 2^\mathbb{Z})$ is distal, whereas $(\mathbb{R}, <, +, \cdot, 0, 1, 2^\mathbb{Q})$ is **not**
 distal (Hieronymi, Nell, 2017)
Theorem

The ordered abelian group \((\mathbb{Q}^+, \cdot, <)\) is not distal.
Theorem

The ordered abelian group $(\mathbb{Q}^>, \cdot, <)$ is not distal.

- Let G be monster model of $(\mathbb{Q}^>, \cdot, <)$, written additively.
A non-distal ordered abelian group

Theorem

The ordered abelian group \((\mathbb{Q}^>0, \cdot, <)\) is not distal.

- Let \(G\) be monster model of \((\mathbb{Q}^>0, \cdot, <)\), written additively.
- \(G/pG\) is infinite for all (thus at least one) primes \(p\), fix such a \(p\).
Theorem

The ordered abelian group \((\mathbb{Q}^>, \cdot, <)\) is not distal.

- Let \(G\) be monster model of \((\mathbb{Q}^>, \cdot, <)\), written additively.
- \(G/pG\) is infinite for all (thus at least one) primes \(p\), fix such a \(p\).
- \(G\) has QE in the presburger language \((0, 1, +, -, <, (\equiv_m)_{m \geq 1})\), where \(x \equiv_m y\) is interpreted as \(x - y \in mG\).
Theorem

The ordered abelian group \((\mathbb{Q}^+, \cdot, <)\) is not distal.

- Let \(G\) be monster model of \((\mathbb{Q}^+, \cdot, <)\), written additively.
- \(G/pG\) is infinite for all (thus at least one) primes \(p\), fix such a \(p\).
- \(G\) has QE in the presburger language \((0, 1, +, −, <, (\equiv_m)_{m \geq 1})\), where \(x \equiv_m y\) is interpreted as \(x - y \in mG\).
- Using Ramsey, we construct indiscernible sequence \((a_i)_{i \in (-1, 1)}\)
 which is rapidly increasing and \(a_i \not\equiv_p a_j\) for \(i \neq j\).
A non-distal ordered abelian group

Theorem

The ordered abelian group \((\mathbb{Q}^>, \cdot, <)\) is not distal.

- Let \(G\) be monster model of \((\mathbb{Q}^>, \cdot, <)\), written additively.
- \(G/pG\) is infinite for all (thus at least one) primes \(p\), fix such a \(p\).
- \(G\) has QE in the presburger language \((0, 1, +, -, <, (\equiv_m)_{m\geq 1})\), where \(x \equiv_m y\) is interpreted as \(x - y \in mG\).
- Using Ramsey, we construct indiscernible sequence \((a_i)_{i \in (-1, 1)}\) which is rapidly increasing and \(a_i \not\equiv_p a_j\) for \(i \neq j\).
- Now make sequence \((b_i)_{i \in (-1, 1]}\) such that
 - \((b_i)_{i \in (-1, 1)}\) is the same as \((a_i)_{i \in (-1, 1)}\)
 - \(b_1 > (b_i)_{i \in (-1, 1)}\) and \(b_1 \equiv_p b_0\)
 - \(b_1\) satisfies the same congruence relations as \(b_0\) does with \((b_i)_{i \in (-1, 0) \cup (0, 1)}\) (uses fact that abelian groups are stable!)
A non-distal ordered abelian group

Theorem

The ordered abelian group \((\mathbb{Q}^>0, \cdot, <)\) is not distal.

- Let \(G\) be monster model of \((\mathbb{Q}^>0, \cdot, <)\), written additively.
- \(G/pG\) is infinite for all (thus at least one) primes \(p\), fix such a \(p\).
- \(G\) has QE in the presburger language \((0, 1, +, -, <, (\equiv_m)_{m \geq 1})\), where \(x \equiv_m y\) is interpreted as \(x - y \in mG\).
- Using Ramsey, we construct indiscernible sequence \((a_i)_{i \in (-1,1)}\) which is rapidly increasing and \(a_i \not\equiv_p a_j\) for \(i \neq j\).
- Now make sequence \((b_i)_{i \in (-1,1]}\) such that
 - \((b_i)_{i \in (-1,1)}\) is the same as \((a_i)_{i \in (-1,1)}\)
 - \(b_1 > (b_i)_{i \in (-1,1)}\) and \(b_1 \equiv_p b_0\)
 - \(b_1\) satisfies the same congruence relations as \(b_0\) does with \((b_i)_{i \in (-1,0) \cup (0,1)}\) (uses fact that abelian groups are stable!)
A non-distal ordered abelian group

Theorem

The ordered abelian group \((\mathbb{Q}^>, \cdot, <)\) is not distal.

- Let \(G\) be monster model of \((\mathbb{Q}^>, \cdot, <)\), written additively.
- \(G/pG\) is infinite for all (thus at least one) primes \(p\), fix such a \(p\).
- \(G\) has QE in the presburger language \((0, 1, +, −, <, (\equiv_m)_{m\geq 1})\), where \(x \equiv_m y\) is interpreted as \(x − y \in mG\).
- Using Ramsey, we construct indiscernible sequence \((a_i)_{i\in(-1,1)}\) which is rapidly increasing and \(a_i \not\equiv_p a_j\) for \(i \neq j\).
- Now make sequence \((b_i)_{i\in(-1,1]}\) such that
 - \((b_i)_{i\in(-1,1)}\) is the same as \((a_i)_{i\in(-1,1)}\)
 - \(b_1 > (b_i)_{i\in(-1,1)}\) and \(b_1 \equiv_p b_0\)
 - \(b_1\) satisfies the same congruence relations as \(b_0\) does with \((b_i)_{i\in(-1,0)\cup(0,1)}\) (uses fact that abelian groups are stable!)
Let G be an OAG. For each $n \geq 1$ we will define three new sorts S_n, T_n, and T_n^+ which encode uniformly definable families of convex subgroups of G. The so-called auxiliary sorts.
Let G be an OAG. For each $n \geq 1$ we will define three new sorts S_n, T_n, and T_n^+ which encode uniformly definable families of convex subgroups of G. The so-called auxiliary sorts.

For $a \in G \setminus nG$, let $H_a \subseteq G$ be the largest convex subgroup such that $a \notin H_a + nG$; set $H_a = \{0\}$ if $a \in nG$. Define $S_n := G/\sim$, with $a \sim a'$ iff $H_a = H_{a'}$, and let $s_n : G \to S_n$ be the canonical map. (Yes, this actually is all definable)
Let G be an OAG. For each $n \geq 1$ we will define three new sorts S_n, T_n, and T_n^+ which encode uniformly definable families of convex subgroups of G. The so-called auxiliary sorts.

For $a \in G \setminus nG$, let $H_a \subseteq G$ be the largest convex subgroup such that $a \notin H_a + nG$; set $H_a = \{0\}$ if $a \in nG$. Define $S_n := G/\sim$, with $a \sim a'$ iff $H_a = H_{a'}$, and let $s_n : G \to S_n$ be the canonical map. (Yes, this actually is all definable)

For $b \in G$, set $H_b' := \bigcup_{\alpha \in S_n, b \notin G_\alpha} G_\alpha$, where the union over the empty set is $\{0\}$. Define $T_n := G/\sim$, with $b \sim b'$ iff $H_b' = H_{b'}$, and let $t_n : G \to T_n$ be the canonical map.
Let G be an OAG. For each $n \geq 1$ we will define three new sorts S_n, T_n, and T_n^+ which encode uniformly definable families of convex subgroups of G. The so-called auxiliary sorts.

For $a \in G \setminus nG$, let $H_a \subseteq G$ be the largest convex subgroup such that $a \notin H_a + nG$; set $H_a = \{0\}$ if $a \in nG$. Define $S_n := G/\sim$, with $a \sim a'$ iff $H_a = H_{a'}$, and let $s_n : G \to S_n$ be the canonical map. (Yes, this actually is all definable)

For $b \in G$, set $H'_b := \bigcup_{\alpha \in S_n, b \notin G_\alpha} G_\alpha$, where the union over the empty set is $\{0\}$. Define $T_n := G/\sim$, with $b \sim b'$ iff $H'_b = H'_{b'}$, and let $t_n : G \to T_n$ be the canonical map.

For $\beta \in T_n$, define $G_\beta^+ := \bigcup_{\alpha \in S_n, G_\alpha \supseteq G_\beta} G_\alpha$. We view β^+ as being an element of a copy of T_n which we denote by T_n^+.
Let G be an OAG. For each $n \geq 1$ we will define three new sorts S_n, T_n, and T_n^+ which encode uniformly definable families of convex subgroups of G. The so-called auxiliary sorts.

For $a \in G \setminus nG$, let $H_a \subseteq G$ be the largest convex subgroup such that $a \not\in H_a + nG$; set $H_a = \{0\}$ if $a \in nG$. Define $S_n := G/\sim$, with $a \sim a'$ iff $H_a = H_{a'}$, and let $s_n : G \to S_n$ be the canonical map. (Yes, this actually is all definable)

For $b \in G$, set $H'_b := \bigcup_{\alpha \in S_n, b \not\in G_\alpha} G_\alpha$, where the union over the empty set is $\{0\}$. Define $T_n := G/\sim$, with $b \sim b'$ iff $H'_b = H'_{b'}$, and let $t_n : G \to T_n$ be the canonical map.

For $\beta \in T_n$, define $G_{\beta^+} := \bigcup_{\alpha \in S_n, G_{\alpha} \supseteq G_\beta} G_\alpha$. We view β^+ as being an element of a copy of T_n which we denote by T_n^+.

Define total preorder on $\bigcup_{n \geq 1}(S_n \cup T_n \cup T_n^+)$ by $\alpha \leq \alpha'$ iff $G_\alpha \subseteq G_{\alpha'}$.
Let G be an OAG. For each $n \geq 1$ we will define three new sorts S_n, T_n, and T_n^+ which encode uniformly definable families of convex subgroups of G. The so-called auxiliary sorts.

For $a \in G \setminus nG$, let $H_a \subseteq G$ be the largest convex subgroup such that $a \notin H_a + nG$; set $H_a = \{0\}$ if $a \in nG$. Define $S_n := G/\sim$, with $a \sim a'$ iff $H_a = H_{a'}$, and let $s_n : G \to S_n$ be the canonical map. (Yes, this actually is all definable)

For $b \in G$, set $H'_b := \bigcup_{\alpha \in S_n, b \notin G_\alpha} G_\alpha$, where the union over the empty set is $\{0\}$. Define $T_n := G/\sim$, with $b \sim b'$ iff $H'_b = H'_{b'}$, and let $t_n : G \to T_n$ be the canonical map.

For $\beta \in T_n$, define $G_{\beta}^+ := \bigcup_{\alpha \in S_n, G_\alpha \supseteq G_\beta} G_\alpha$. We view β^+ as being an element of a copy of T_n which we denote by T_n^+.

Define total preorder on $\bigcup_{n \geq 1} (S_n \cup T_n \cup T_n^+)$ by $\alpha \leq \alpha'$ iff $G_\alpha \subseteq G_{\alpha'}$.

Allen Gehret (UCLA)
Distal and non-distal ordered abelian groups
Notre Dame MT Seminar
Let G be an OAG. For each $n \geq 1$ we will define three new sorts S_n, T_n, and T_n^+ which encode uniformly definable families of convex subgroups of G. The so-called auxiliary sorts.

For $a \in G \setminus nG$, let $H_a \subseteq G$ be the largest convex subgroup such that $a \not\in H_a + nG$; set $H_a = \{0\}$ if $a \in nG$. Define $S_n := G/\sim$, with $a \sim a'$ iff $H_a = H_{a'}$, and let $s_n : G \to S_n$ be the canonical map. (Yes, this actually is all definable)

For $b \in G$, set $H'_b := \bigcup_{\alpha \in S_n, b \not\in G_\alpha} G_\alpha$, where the union over the empty set is $\{0\}$. Define $T_n := G/\sim$, with $b \sim b'$ iff $H'_b = H'_{b'}$, and let $t_n : G \to T_n$ be the canonical map.

For $\beta \in T_n$, define $G_{\beta^+} := \bigcup_{\alpha \in S_n, G_\alpha \supseteq G_\beta} G_\alpha$. We view β^+ as being an element of a copy of T_n which we denote by T_n^+.

Define total preorder on $\bigcup_{n \geq 1} (S_n \cup T_n \cup T_n^+)$ by $\alpha \leq \alpha'$ iff $G_\alpha \subseteq G_{\alpha'}$.
An example

\[G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_2 \epsilon_q \] with the lexicographic order.
An example

- $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_2 \epsilon_q$ with the lexicographic order.
- Given $a = \sum_{q \in \mathbb{Q}} r_q \epsilon_q \in G$, let $q_0 = \min\{q : r_q \neq 0\}$, then:

$$H_a = G_{s_2(a)} := \sum_{q > q_0} \mathbb{Z}_2 \epsilon_q \subseteq G$$
An example

- $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_2 \epsilon_q$ with the lexicographic order.

- Given $a = \sum_{q \in \mathbb{Q}} r_q \epsilon_q \in G$, let $q_0 = \min\{q : r_q \not\equiv 2 0\}$, then:

 $$H_a = G_{s2(a)} := \sum_{q > q_0} \mathbb{Z}_2 \epsilon_q \subseteq G$$

- Let $q_0 = \min\{q : r_q \neq 0\}$, then $H'_a = G_{t2(a)} = \sum_{q > q_0} \mathbb{Z}_2 \epsilon_q \subseteq G$
An example

- $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}(2) \epsilon_q$ with the lexicographic order.

Given $a = \sum_{q \in \mathbb{Q}} r_q \epsilon_q \in G$, let $q_0 = \min\{q : r_q \neq 2 \cdot 0\}$, then:

$$H_a = G_{s_2(a)} := \sum_{q > q_0} \mathbb{Z}(2) \epsilon_q \subseteq G$$

- Let $q_0 = \min\{q : r_q \neq 0\}$, then $H'_a = G_{t_2(a)} = \sum_{q > q_0} \mathbb{Z}(2) \epsilon_q \subseteq G$

- Let $q_0 = \min\{q : r_q \neq 0\}$, then $G_{t_2(a)+} = \sum_{q \geq q_0} \mathbb{Z}(2) \epsilon_q \subseteq G$
An example

- $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}(2) \epsilon_q$ with the lexicographic order.
- Given $a = \sum_{q \in \mathbb{Q}} r_q \epsilon_q \in G$, let $q_0 = \min\{q : r_q \neq 0\}$, then:

$$H_a = G_{s_2(a)} := \sum_{q > q_0} \mathbb{Z}(2) \epsilon_q \subseteq G$$

- Let $q_0 = \min\{q : r_q \neq 0\}$, then $H'_a = G_{t_2(a)} = \sum_{q > q_0} \mathbb{Z}(2) \epsilon_q \subseteq G$
- Let $q_0 = \min\{q : r_q \neq 0\}$, then $G_{t_2(a)+} = \sum_{q \geq q_0} \mathbb{Z}(2) \epsilon_q \subseteq G$
- The above shows that S_2, T_2, T_2^+ are order-isomorphic to $(\mathbb{Q}, <)$.

For a prime $p \neq 2$, since $G = pG$, S_p, T_p, T_p^+ are trivial.
An example

- \(G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_2 \varepsilon_q \) with the lexicographic order.

- Given \(a = \sum_{q \in \mathbb{Q}} r_q \varepsilon_q \in G \), let \(q_0 = \min \{ q : r_q \neq 0 \} \), then:
 \[
 H_a = G_{s_2(a)} := \sum_{q > q_0} \mathbb{Z}_2 \varepsilon_q \subseteq G
 \]

- Let \(q_0 = \min \{ q : r_q \neq 0 \} \), then \(H'_a = G_{t_2(a)} = \sum_{q > q_0} \mathbb{Z}_2 \varepsilon_q \subseteq G \)

- Let \(q_0 = \min \{ q : r_q \neq 0 \} \), then \(G_{t_2(a)}^+ = \sum_{q \geq q_0} \mathbb{Z}_2 \varepsilon_q \subseteq G \)

- The above shows that \(S_2, T_2, T_2^+ \) are order-isomorphic to \((\mathbb{Q}, <)\).

- For a prime \(p \neq 2 \), since \(G = pG, S_p, T_p, T_p^+ \) are trivial.
An example

- \(G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}_2 \epsilon_q \) with the lexicographic order.

- Given \(a = \sum_{q \in \mathbb{Q}} r_q \epsilon_q \in G \), let \(q_0 = \min \{ q : r_q \neq 0 \} \), then:

\[
H_a = G_{s_2(a)} := \sum_{q > q_0} \mathbb{Z}_2 \epsilon_q \subseteq G
\]

- Let \(q_0 = \min \{ q : r_q \neq 0 \} \), then

\[
H'_a = G_{t_2(a)} = \sum_{q > q_0} \mathbb{Z}_2 \epsilon_q \subseteq G
\]

- Let \(q_0 = \min \{ q : r_q \neq 0 \} \), then

\[
G_{t_2(a)}^+ = \sum_{q \geq q_0} \mathbb{Z}_2 \epsilon_q \subseteq G
\]

- The above shows that \(S_2, T_2, T_2^+ \) are order-isomorphic to \((\mathbb{Q}, <)\).

- For a prime \(p \neq 2 \), since \(G = pG \), \(S_p, T_p, T_p^+ \) are trivial.
The Cluckers-Halupczok language for relative QE for OAGs

- The rest of the language is technical, but it essentially allows you to have the presburger language on all quotients G/G_α where α is from an auxiliary sort.
The rest of the language is technical, but it essentially allows you to have the presburger language on all quotients G/G_α where α is from an auxiliary sort.

There are also unary predicates on the auxiliary sorts which encode when quotients are discrete and to tell you the dimensions of various canonical vector spaces you can define.
The rest of the language is technical, but it essentially allows you to have the presburger language on all quotients G/G_α where α is from an auxiliary sort.

There are also unary predicates on the auxiliary sorts which encode when quotients are discrete and to tell you the dimensions of various canonical vector spaces you can define.

They call their language L_{qe}.
The rest of the language is technical, but it essentially allows you to have the Presburger language on all quotients G/G_α where α is from an auxiliary sort.

There are also unary predicates on the auxiliary sorts which encode when quotients are discrete and to tell you the dimensions of various canonical vector spaces you can define.

They call their language L_{qe}.
The relative QE result for OAGs

Theorem (Cluckers, Halupczok)

In the theory of ordered abelian groups, each L_{qe}-formula $\psi(\bar{x}, \bar{\eta})$, where \bar{x} are home sort variables, and $\bar{\eta}$ are auxiliary sort variables, is equivalent to an L_{qe}-formula $\phi(\bar{x}, \bar{\eta})$ in family union form:

$$\phi(\bar{x}, \bar{\eta}) = \bigvee_{i=1}^{k} \exists \bar{\theta}(\xi_i(\bar{\eta}, \bar{\theta}) \land \psi_i(\bar{x}, \bar{\theta})),$$

where $\bar{\theta}$ are auxiliary sort variables, the formulas $\xi_i(\bar{\eta}, \bar{\theta})$ live purely in the auxiliary sorts, each $\psi_i(\bar{x}, \bar{\theta})$ is a conjunction of literals (i.e., of atoms and negated atoms), and for any ordered abelian group G and any $\bar{\beta}$ in the auxiliary sort of G corresponding to $\bar{\eta}$, the $L_{qe}(G)$-formulas

$$\{\xi_i(\bar{\beta}, \bar{\alpha}) \land \psi_i(\bar{x}, \bar{\alpha}) : 1 \leq i \leq k, \bar{\alpha} \in \text{auxiliary sorts of } G\}$$

are pairwise inconsistent.

Corollary: Definable functions in G are piecewise linear.
The relative QE result for OAGs

Theorem (Cluckers, Halupczok)

In the theory of ordered abelian groups, each L_{qe}-formula $\psi(\bar{x}, \bar{\eta})$, where \bar{x} are home sort variables, and $\bar{\eta}$ are auxiliary sort variables, is equivalent to an L_{qe}-formula $\phi(\bar{x}, \bar{\eta})$ in family union form:

$$
\phi(\bar{x}, \bar{\eta}) = \bigvee_{i=1}^{k} \exists \bar{\theta}(\xi_i(\bar{\eta}, \bar{\theta}) \land \psi_i(\bar{x}, \bar{\theta})),
$$

where $\bar{\theta}$ are auxiliary sort variables, the formulas $\xi_i(\bar{\eta}, \bar{\theta})$ live purely in the auxiliary sorts, each $\psi_i(\bar{x}, \bar{\theta})$ is a conjunction of literals (i.e., of atoms and negated atoms), and for any ordered abelian group G and any $\bar{\beta}$ in the auxiliary sort of G corresponding to $\bar{\eta}$, the $L_{qe}(G)$-formulas $\{\xi_i(\bar{\beta}, \bar{\alpha}) \land \psi_i(\bar{x}, \bar{\alpha}) : 1 \leq i \leq k, \bar{\alpha} \in \text{auxiliary sorts of } G\}$ are pairwise inconsistent.

Corollary: Definable functions in G are piecewise linear.
The relative QE result for OAGs

Theorem (Cluckers, Halupczok)

In the theory of ordered abelian groups, each L_{qe}-formula $\psi(\bar{x}, \bar{\eta})$, where \bar{x} are home sort variables, and $\bar{\eta}$ are auxiliary sort variables, is equivalent to an L_{qe}-formula $\phi(\bar{x}, \bar{\eta})$ in family union form:

$$
\phi(\bar{x}, \bar{\eta}) = \bigvee_{i=1}^{k} \exists \bar{\theta} (\xi_i(\bar{\eta}, \bar{\theta}) \land \psi_i(\bar{x}, \bar{\theta})),
$$

where $\bar{\theta}$ are auxiliary sort variables, the formulas $\xi_i(\bar{\eta}, \bar{\theta})$ live purely in the auxiliary sorts, each $\psi_i(\bar{x}, \bar{\theta})$ is a conjunction of literals (i.e., of atoms and negated atoms), and for any ordered abelian group G and any $\bar{\beta}$ in the auxiliary sort of G corresponding to $\bar{\eta}$, the $L_{qe}(G)$-formulas $\{\xi_i(\bar{\beta}, \bar{\alpha}) \land \psi_i(\bar{x}, \bar{\alpha}) : 1 \leq i \leq k, \bar{\alpha} \in \text{auxiliary sorts of } G\}$ are pairwise inconsistent.

Corollary: Definable functions in G are piecewise linear.
Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

1. G is distal.
2. G/pG is finite for all primes p.
3. G is dp-minimal. \[(2) \iff (3) \text{ Jahnke, Simon, Walsberg (2017)}\]

Proof.

1. G is distal.

 Thanks to the assumptions on S_p, we can arrange full QE for G. Then the argument generalizes the one for $(\mathbb{Q}^+, \cdot, <)$.

2. G/pG is finite for all primes p.

3. G is dp-minimal. \[(2) \iff (3) \text{ Jahnke, Simon, Walsberg (2017)}\]

The assumptions include the strongly dependent ordered abelian groups. To my knowledge, all known ordered abelian groups that have full QE fall under these assumptions.
Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

1. G is distal.
2. G/pG is finite for all primes p.
3. G is dp-minimal.

\[(2) \iff (3) \text{ Jahnke, Simon, Walsberg (2017)}\]

Proof.

$(1) \implies (2)$ Thanks to the assumptions on S_p, we can arrange full QE for G. Then the argument generalizes the one for $(\mathbb{Q}^+, \cdot, <)$.
Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

1. G is distal.
2. G/pG is finite for all primes p.
3. G is dp-minimal. [(2) \iff (3) Jahnke, Simon, Walsberg (2017)]

Proof.

(1) \implies (2) Thanks to the assumptions on S_p, we can arrange full QE for G. Then the argument generalizes the one for $(\mathbb{Q}^+, \cdot, <)$.

(3) \implies (1) It is a fact that all dp-minimal totally ordered 1-sorted structures are distal; Simon (2013).
Distal and non-distal OAGs in an easy case

Theorem

Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

1. G is distal.
2. G/pG is finite for all primes p.
3. G is dp-minimal. [$(2) \iff (3)$ Jahnke, Simon, Walsberg (2017)]

Proof.

$(1) \Rightarrow (2)$ Thanks to the assumptions on S_p, we can arrange full QE for G. Then the argument generalizes the one for $(\mathbb{Q}^0, \cdot, <)$.

$(3) \Rightarrow (1)$ It is a fact that all dp-minimal totally ordered 1-sorted structures are distal; Simon (2013).

The assumptions include the strongly dependent ordered abelian groups. To my knowledge, all known ordered abelian groups that have full QE in a natural language fall under these assumptions.
Suppose G is an ordered abelian group such that S_p is finite for all primes p. Then the following are equivalent:

1. G is distal.
2. G/pG is finite for all primes p.
3. G is dp-minimal. [(2) ⇔ (3)] Jahnke, Simon, Walsberg (2017)]

Proof.

(1) \Rightarrow (2) Thanks to the assumptions on S_p, we can arrange full QE for G. Then the argument generalizes the one for $(\mathbb{Q}^+, \cdot, <)$.

(3) \Rightarrow (1) It is a fact that all dp-minimal totally ordered 1-sorted structures are distal; Simon (2013).

The assumptions include the strongly dependent ordered abelian groups. To my knowledge, all known ordered abelian groups that have full QE in a natural language fall under these assumptions.
A possible counterexample in the general case.

- We believe the ordered abelian group \(G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}(2)^{\epsilon_q} \) is distal, even though \(G/2G \) is infinite.
A possible counterexample in the general case.

- We believe the ordered abelian group $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}(2) \epsilon_q$ is distal, even though $G/2G$ is infinite.

- Idea: $G/2G \cong \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}/2\mathbb{Z}$ as abelian groups, which is stable. Usually this would yield non-distality since modding out by 2 “destroys” the order. However in this case, the map s_2 on G gives a definable valuation $G/2G \rightarrow \Gamma_\infty$, where $\Gamma \cong (\mathbb{Q}, <)$, so the quotient is still being governed by a linear order somewhere.
We believe the ordered abelian group $G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}(2)_{\epsilon_q}$ is distal, even though $G/2G$ is infinite.

Idea: $G/2G \cong \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}/2\mathbb{Z}$ as abelian groups, which is stable. Usually this would yield non-distality since modding out by 2 “destroys” the order. However in this case, the map s_2 on G gives a definable valuation $G/2G \to \Gamma_\infty$, where $\Gamma \cong (\mathbb{Q}, <)$, so the quotient is still being governed by a linear order somewhere.

Obstruction: QE
A possible counterexample in the general case.

- We believe the ordered abelian group \(G = \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}(2) \epsilon_q \) is distal, even though \(G/2G \) is infinite.

- Idea: \(G/2G \cong \bigoplus_{q \in \mathbb{Q}} \mathbb{Z}/2\mathbb{Z} \) as abelian groups, which is stable. Usually this would yield non-distality since modding out by 2 “destroys” the order. However in this case, the map \(s_2 \) on \(G \) gives a definable valuation \(G/2G \to \Gamma_\infty \), where \(\Gamma \cong (\mathbb{Q}, <) \), so the quotient is still being governed by a linear order somewhere.

- Obstruction: QE