A Tale of Two Liouville Closures...

Allen Gehret

University of Illinois at Urbana-Champaign
agehret2@illinois.edu

Kolchin Research and Training Workshop III
May 5 and 7, 2017
Overview

1. Hardy fields

2. H-fields
Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions
- Maxwell Rosenlicht
Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions
- Maxwell Rosenlicht

- Let \mathcal{G} be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$
Hardy fields

Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions

- Maxwell Rosenlicht

- Let \mathcal{G} be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$

- A germ is said to be **differentiable, continuous**, etc. if it is the germ of a function that is differentiable, continuous, etc.
Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions
- Maxwell Rosenlicht

- Let \mathcal{G} be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$
- A germ is said to be differentiable, continuous, etc. if it is the germ of a function that is differentiable, continuous, etc.
- Given differentiable $g \in \mathcal{G}$, $g' \in \mathcal{G}$ is defined to be the germ of the derivative of a differentiable representative of g
Hardy fields

Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions

- Maxwell Rosenlicht

- Let \mathcal{G} be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$

- A germ is said to be *differentiable*, *continuous*, etc. if it is the germ of a function that is differentiable, continuous, etc.

- Given differentiable $g \in \mathcal{G}$, $g' \in \mathcal{G}$ is defined to be the germ of the derivative of a differentiable representative of g

- A **Hardy field** is a subring K of \mathcal{G} such that K is a field, all $g \in K$ are differentiable, and $g' \in K$ for all $g \in K$
Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions
- Maxwell Rosenlicht

- Let G be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$
- A germ is said to be **differentiable**, **continuous**, etc. if it is the germ of a function that is differentiable, continuous, etc.
- Given differentiable $g \in G$, $g' \in G$ is defined to be the germ of the derivative of a differentiable representative of g
- A **Hardy field** is a subring K of G such that K is a field, all $g \in K$ are differentiable, and $g' \in K$ for all $g \in K$
- Examples:
 $\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{R}$,
Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions
- Maxwell Rosenlicht

- Let G be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$
- A germ is said to be differentiable, continuous, etc. if it is the germ of a function that is differentiable, continuous, etc.
- Given differentiable $g \in G$, $g' \in G$ is defined to be the germ of the derivative of a differentiable representative of g
- A **Hardy field** is a subring K of G such that K is a field, all $g \in K$ are differentiable, and $g' \in K$ for all $g \in K$
- Examples:
 - \mathbb{Q}, $\mathbb{Q}(\sqrt{2})$, \mathbb{R}, $\mathbb{Q}(x)$, $\mathbb{R}(x)$,
Hardy fields

Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions
- Maxwell Rosenlicht

- Let G be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$
- A germ is said to be **differentiable, continuous**, etc. if it is the germ of a function that is differentiable, continuous, etc.
- Given differentiable $g \in G$, $g' \in G$ is defined to be the germ of the derivative of a differentiable representative of g
- A **Hardy field** is a subring K of G such that K is a field, all $g \in K$ are differentiable, and $g' \in K$ for all $g \in K$
- Examples:
 \mathbb{Q}, $\mathbb{Q}(\sqrt{2})$, \mathbb{R}, $\mathbb{Q}(x)$, $\mathbb{R}(x)$, $\mathbb{R}(x, \sqrt{\log x}, e^x, \exp(x\sqrt{\log x} + e^x))$, …
Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions
- Maxwell Rosenlicht

- Let \mathcal{G} be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$
- A germ is said to be differentiable, continuous, etc. if it is the germ of a function that is differentiable, continuous, etc.
- Given differentiable $g \in \mathcal{G}$, $g' \in \mathcal{G}$ is defined to be the germ of the derivative of a differentiable representative of g
- A **Hardy field** is a subring K of \mathcal{G} such that K is a field, all $g \in K$ are differentiable, and $g' \in K$ for all $g \in K$
- Examples: $\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{R}, \mathbb{Q}(x), \mathbb{R}(x), \mathbb{R}(x, \sqrt{\log x}, e^x, \exp(x\sqrt{\log x} + e^x)), \ldots$
Hardy fields

Hardy fields are the natural domain of asymptotic analysis, where all rules hold, without qualifying conditions
- Maxwell Rosenlicht

- Let G be the ring of germs of real valued functions whose domain is a subset of \mathbb{R} containing an interval $(a, +\infty)$ for some $a \in \mathbb{R}$
- A germ is said to be **differentiable, continuous**, etc. if it is the germ of a function that is differentiable, continuous, etc.
- Given differentiable $g \in G$, $g' \in G$ is defined to be the germ of the derivative of a differentiable representative of g
- A **Hardy field** is a subring K of G such that K is a field, all $g \in K$ are differentiable, and $g' \in K$ for all $g \in K$
- Examples:
 \[\mathbb{Q}, \mathbb{Q}(\sqrt{2}), \mathbb{R}, \mathbb{Q}(x), \mathbb{R}(x), \mathbb{R}(x, \sqrt{\log x}, e^x, \exp(x\sqrt{\log x} + e^x)), \ldots \]
Some nice properties of Hardy fields

Let K be a Hardy field and $f \in K$

- If $f \neq 0$, then f does not have arbitrarily large zeros.
Some nice properties of Hardy fields

Let K be a Hardy field and $f \in K$

- If $f \neq 0$, then f does not have arbitrarily large zeros.
- All derivatives of f are eventually monotone.
Some nice properties of Hardy fields

Let K be a Hardy field and $f \in K$

- If $f \neq 0$, then f does not have arbitrarily large zeros.
- All derivatives of f are eventually monotone
- $\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{\pm \infty\}$ always exists!
Let K be a Hardy field and $f \in K$

- If $f \neq 0$, then f does not have arbitrarily large zeros.
- All derivatives of f are eventually monotone
- $\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{\pm \infty\}$ always exists!
- $f > 0$ eventually, or $f = 0$ eventually, or $f < 0$ eventually. Thus every Hardy field is an ordered field
Some nice properties of Hardy fields

Let K be a Hardy field and $f \in K$

- If $f \neq 0$, then f does not have arbitrarily large zeros.
- All derivatives of f are eventually monotone
- $\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{\pm \infty\}$ always exists!
- $f > 0$ eventually, or $f = 0$ eventually, or $f < 0$ eventually. Thus every Hardy field is an ordered field
- $\cos(x), \sin(x)$ and most other common oscillating functions can’t belong to any Hardy field
Some nice properties of Hardy fields

Let K be a Hardy field and $f \in K$

- If $f \neq 0$, then f does not have arbitrarily large zeros.
- All derivatives of f are eventually monotone
- $\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{\pm \infty\}$ always exists!
- $f > 0$ eventually, or $f = 0$ eventually, or $f < 0$ eventually. Thus every Hardy field is an ordered field
- $\cos(x), \sin(x)$ and most other common oscillating functions can’t belong to any Hardy field
- However... Hardy fields can contain “crypto-oscillation”, i.e.,
 $\mathbb{R}\langle \Gamma'(x)/\Gamma(x) + x + \lambda e^{-x} \sin x \rangle$ is a Hardy field. This shows there is no maximum Hardy field.
Some nice properties of Hardy fields

Let K be a Hardy field and $f \in K$

- If $f \neq 0$, then f does not have arbitrarily large zeros.
- All derivatives of f are eventually monotone
- $\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{\pm \infty\}$ always exists!
- $f > 0$ eventually, or $f = 0$ eventually, or $f < 0$ eventually. Thus every Hardy field is an ordered field
- $\cos(x), \sin(x)$ and most other common oscillating functions can’t belong to any Hardy field
- However... Hardy fields can contain “crypto-oscillation”, i.e., $\mathbb{R} \langle \Gamma'(x)/\Gamma(x) + x + \lambda e^{-x} \sin x \rangle$ is a Hardy field. This shows there is no maximum Hardy field.
Some nice properties of Hardy fields

Let K be a Hardy field and $f \in K$

- If $f \neq 0$, then f does not have arbitrarily large zeros.
- All derivatives of f are eventually monotone
- $\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{\pm\infty\}$ always exists!
- $f > 0$ eventually, or $f = 0$ eventually, or $f < 0$ eventually. Thus every Hardy field is an ordered field
- $\cos(x), \sin(x)$ and most other common oscillating functions can’t belong to any Hardy field
- However... Hardy fields can contain “crypto-oscillation”, i.e., $\mathbb{R}\langle \Gamma'(x)/\Gamma(x) + x + \lambda e^{-x} \sin x \rangle$ is a Hardy field. This shows there is no maximum Hardy field.
Liouville extensions and closures

- **A differential field** is a characteristic zero field K equipped with a derivation $\partial : K \rightarrow K$ (additive map satisfying Leibniz identity: $\partial(ab) = \partial(a)b + a\partial(b)$). Also define $C_K = C = \ker \partial$, the constant field of K.
A differential field is a characteristic zero field K equipped with a derivation $\partial : K \to K$ (additive map satisfying Leibniz identity: $\partial(ab) = \partial(a)b + a\partial(b)$). Also define $C_K = C = \ker \partial$, the constant field of K.

A Liouville extension of a differential field K is a differential field extension L of K such that C_L is algebraic over C_K and for each $a \in L$ there are $t_1, \ldots, t_n \in L$ with $a \in K(t_1, \ldots, t_n)$ and for $i = 1, \ldots, n$,

- t_i is algebraic over $K(t_1, \ldots, t_{i-1})$, or
- $\partial(t_i) \in K(t_1, \ldots, t_{i-1})$, or
- $t_i \neq 0$ and $\partial(t_i)/t_i \in K(t_1, \ldots, t_{i-1})$.

A differential field K is Liouville closed if it is real closed and for every $f, g \in K$ there is $y \in K \times$ such that $y' + fy = g$. A Liouville closure of K is a Liouville closed differential field extension L of K that is a Liouville extension. (provisional definition)
A differential field is a characteristic zero field K equipped with a derivation $\partial : K \to K$ (additive map satisfying Leibniz identity: $\partial(ab) = \partial(a)b + a\partial(b)$). Also define $C_K = C = \ker \partial$, the constant field of K.

A Liouville extension of a differential field K is a differential field extension L of K such that C_L is algebraic over C_K and for each $a \in L$ there are $t_1, \ldots, t_n \in L$ with $a \in K(t_1, \ldots, t_n)$ and for $i = 1, \ldots, n$,

- t_i is algebraic over $K(t_1, \ldots, t_{i-1})$, or
- $\partial(t_i) \in K(t_1, \ldots, t_{i-1})$, or
- $t_i \neq 0$ and $\partial(t_i)/t_i \in K(t_1, \ldots, t_{i-1})$.

A differential field K is Liouville closed if it is real closed and for every $f, g \in K$ there is $y \in K^\times$ such that $y' + fy = g$.
Liouville extensions and closures

- A **differential field** is a characteristic zero field K equipped with a derivation $\partial : K \to K$ (additive map satisfying Leibniz identity: $\partial(ab) = \partial(a)b + a\partial(b)$). Also define $C_K = C = \ker \partial$, the **constant field of K**.

- A **Liouville extension** of a differential field K is a differential field extension L of K such that C_L is algebraic over C_K and for each $a \in L$ there are $t_1, \ldots, t_n \in L$ with $a \in K(t_1, \ldots, t_n)$ and for $i = 1, \ldots, n$,
 - t_i is algebraic over $K(t_1, \ldots, t_{i-1})$, or
 - $\partial(t_i) \in K(t_1, \ldots, t_{i-1})$, or
 - $t_i \neq 0$ and $\partial(t_i)/t_i \in K(t_1, \ldots, t_{i-1})$.

- A differential field K is **Liouville closed** if it is real closed and for every $f, g \in K$ there is $y \in K^\times$ such that $y' + fy = g$.

- A **Liouville closure** of K is a Liouville closed differential field extension L of K that is a Liouville extension. (provisional definition)
A differential field is a characteristic zero field K equipped with a derivation $\partial : K \to K$ (additive map satisfying Leibniz identity: $\partial(ab) = \partial(a)b + a\partial(b)$). Also define $C_K = C = \ker \partial$, the constant field of K.

A Liouville extension of a differential field K is a differential field extension L of K such that C_L is algebraic over C_K and for each $a \in L$ there are $t_1, \ldots, t_n \in L$ with $a \in K(t_1, \ldots, t_n)$ and for $i = 1, \ldots, n$,

- t_i is algebraic over $K(t_1, \ldots, t_{i-1})$, or
- $\partial(t_i) \in K(t_1, \ldots, t_{i-1})$, or
- $t_i \neq 0$ and $\partial(t_i)/t_i \in K(t_1, \ldots, t_{i-1})$.

A differential field K is Liouville closed if it is real closed and for every $f, g \in K$ there is $y \in K^\times$ such that $y' + fy = g$.

A Liouville closure of K is a Liouville closed differential field extension L of K that is a Liouville extension. (provisional definition)
A differential field is a characteristic zero field K equipped with a derivation $\partial : K \rightarrow K$ (additive map satisfying Leibniz identity: $\partial(ab) = \partial(a)b + a\partial(b)$). Also define $C_K = C = \ker \partial$, the constant field of K.

A Liouville extension of a differential field K is a differential field extension L of K such that C_L is algebraic over C_K and for each $a \in L$ there are $t_1, \ldots, t_n \in L$ with $a \in K(t_1, \ldots, t_n)$ and for $i = 1, \ldots, n$,

- t_i is algebraic over $K(t_1, \ldots, t_{i-1})$, or
- $\partial(t_i) \in K(t_1, \ldots, t_{i-1})$, or
- $t_i \neq 0$ and $\partial(t_i)/t_i \in K(t_1, \ldots, t_{i-1})$.

A differential field K is Liouville closed if it is real closed and for every $f, g \in K$ there is $y \in K^\times$ such that $y' + fy = g$.

A Liouville closure of K is a Liouville closed differential field extension L of K that is a Liouville extension. (provisional definition)
Let K be a Hardy field

Theorem (Robinson, 1972)

Define $K^{rc} = \{ g \in G : g$ is continuous and algebraic over $K \} \subseteq G$. Then K^{rc} is a Hardy field and a real closure of K. In the category of Hardy fields, it is **THE** real closure of K.

Corollary

If $f \in K$, then $K\left(\int f \right)$, $K\left(e^{f} \right)$, $K\left(\log(|f|) \right)$, $K\left(\exp(\int f) \right)$ are all Hardy fields.
Let K be a Hardy field

Theorem (Robinson, 1972)

Define $K^{rc} = \{ g \in \mathcal{G} : g \text{ is continuous and algebraic over } K \} \subseteq \mathcal{G}$. Then K^{rc} is a Hardy field and a real closure of K. In the category of Hardy fields, it is **THE** real closure of K.

Theorem (Hardy 1912, Marić 1972, Rosenlicht-Singer 1983)

If $P(Y) \in K(Y)$ and $g \in \mathcal{G}$ is differentiable such that satisfies $g' = P(g)$, then $K(g)$ is a Hardy field.
Let K be a Hardy field

Theorem (Robinson, 1972)

Define $K^{rc} = \{ g \in \mathcal{G} : g$ is continuous and algebraic over $K \} \subseteq \mathcal{G}$. Then K^{rc} is a Hardy field and a real closure of K. In the category of Hardy fields, it is **THE** real closure of K.

Theorem (Hardy 1912, Marić 1972, Rosenlicht-Singer 1983)

If $P(Y) \in K(Y)$ and $g \in \mathcal{G}$ is differentiable such that satisfies $g' = P(g)$, then $K(g)$ is a Hardy field.

Corollary

If $f \in K$, then $K(\mathbb{R})$, $K(\int f)$, $K(e^f)$, $K(\log(|f|))$, $K(\exp(\int f))$ are all Hardy fields.
Let K be a Hardy field

Theorem (Robinson, 1972)

Define $K^{rc} = \{ g \in G : g \text{ is continuous and algebraic over } K \} \subseteq G$. Then K^{rc} is a Hardy field and a real closure of K. In the category of Hardy fields, it is **THE** real closure of K.

Theorem (Hardy 1912, Marić 1972, Rosenlicht-Singer 1983)

If $P(Y) \in K(Y)$ and $g \in G$ is differentiable such that satisfies $g' = P(g)$, then $K(g)$ is a Hardy field.

Corollary

If $f \in K$, then $K(\mathbb{R})$, $K(\int f)$, $K(e^f)$, $K(\log(|f|))$, $K(\exp(\int f))$ are all Hardy fields.
Liouville Extensions of Hardy fields

Let K be a Hardy field.

Theorem (Robinson, 1972)

Define $K^{rc} = \{ g \in \mathcal{G} : g \text{ is continuous and algebraic over } K \} \subseteq \mathcal{G}$. Then K^{rc} is a Hardy field and a real closure of K. In the category of Hardy fields, it is **THE** real closure of K.

Theorem (Hardy 1912, Marić 1972, Rosenlicht-Singer 1983)

If $P(Y) \in K(Y)$ and $g \in \mathcal{G}$ is differentiable such that satisfies $g' = P(g)$, then $K(g)$ is a Hardy field.

Corollary

If $f \in K$, then $K(\mathbb{R}), K(\int f), K(e^f), K(\log(|f|)), K(\exp(\int f))$ are all Hardy fields.
Let K be a Hardy field containing \mathbb{R}.
Let K be a Hardy field containing \mathbb{R}

Define $\text{Li}(K) := \{ g \in G : g \text{ lies in some Hardy field Liouville extension of } K \} \subseteq G$
Let K be a Hardy field containing \mathbb{R}

Define $\text{Li}(K) :=$

$$\{ g \in \mathcal{G} : g \text{ lies in some Hardy field Liouville extension of } K \} \subseteq \mathcal{G}$$

In other words, $\text{Li}(K)$ is obtained from K by closing off under integration, exponential integration and real-closing
Let K be a Hardy field containing \mathbb{R}

Define $\text{Li}(K) := \{ g \in \mathcal{G} : g \text{ lies in some Hardy field Liouville extension of } K \} \subseteq \mathcal{G}$

In other words, $\text{Li}(K)$ is obtained from K by closing off under integration, exponential integration and real-closing

$\text{Li}(K)$ is itself a Hardy field and is a Liouville closure of K
Let K be a Hardy field containing \mathbb{R}

Define $\text{Li}(K) := \{ g \in \mathcal{G} : g$ lies in some Hardy field Liouville extension of $K \} \subseteq \mathcal{G}$

In other words, $\text{Li}(K)$ is obtained from K by closing off under integration, exponential integration and real-closing

$\text{Li}(K)$ is itself a Hardy field and is a Liouville closure of K

In fact, in the category of Hardy fields, it is **THE** Liouville closure of K
Liouville closure of Hardy fields

- Let K be a Hardy field containing \mathbb{R}
- Define $\text{Li}(K) := \{ g \in G : g \text{ lies in some Hardy field Liouville extension of } K \} \subseteq G$

- In other words, $\text{Li}(K)$ is obtained from K by closing off under integration, exponential integration and real-closing
- $\text{Li}(K)$ is itself a Hardy field and is a Liouville closure of K
- In fact, in the category of Hardy fields, it is \textbf{THE} Liouville closure of K
Let K be a Hardy field containing \mathbb{R}
Define $\text{Li}(K) := \{ g \in G : g \text{ lies in some Hardy field Liouville extension of } K \} \subseteq G$

In other words, $\text{Li}(K)$ is obtained from K by closing off under integration, exponential integration and real-closing
$\text{Li}(K)$ is itself a Hardy field and is a Liouville closure of K
In fact, in the category of Hardy fields, it is THE Liouville closure of K
H-fields

- **An H-field** is an ordered differential field K such that:
 - (H1) for all $f \in K$, if $f > C_K$, then $\partial(f) > 0$;
 - (H2) $O = C_K + \wp$ where

 $$O = \{ g \in K : |g| \leq c \text{ for some } c \in C_K \}$$

 and \wp is the maximal ideal of the convex subring O of K.

Example: A Hardy field $K \supseteq \mathbb{R}$ is an H-field, with $O = \{ f \in K : \lim_{x \to +\infty} f \in \mathbb{R} \}$, the bounded elements, and $O = \{ f \in K : \lim_{x \to +\infty} f = 0 \}$, the infinitesimal elements.

Other examples: various fields of transseries such as T and $T\log$.

Conway’s No, the ordered field of surreal numbers is a proper class-sized H-field when equipped with the Berarducci-Mantova derivation ∂_{BM}.

Allen Gehret (UIUC)

Liouville closures

Kolchin Seminar 8 / 15
An **H-field** is an ordered differential field K such that:

(H1) for all $f \in K$, if $f > C_K$, then $\partial(f) > 0$;

(H2) $\mathcal{O} = C_K + \mathcal{O}$ where

$$\mathcal{O} = \{ g \in K : |g| \leq c \text{ for some } c \in C_K \}$$

and \mathcal{O} is the maximal ideal of the convex subring \mathcal{O} of K.

Example: A Hardy field $K \supseteq \mathbb{R}$ is an H-field, with

- $\mathcal{O} = \{ f \in K : \lim_{x \to +\infty} f \in \mathbb{R} \}$, the *bounded* elements, and
- $\mathcal{O} = \{ f \in K : \lim_{x \to +\infty} f = 0 \}$, the *infinitesimal* elements
H-fields

- An **H-field** is an ordered differential field K such that:
 - (H1) for all $f \in K$, if $f > C_K$, then $\partial(f) > 0$;
 - (H2) $O = C_K + \mathfrak{o}$ where
 \[
 O = \{g \in K : |g| \leq c \text{ for some } c \in C_K\}
 \]
 and \mathfrak{o} is the maximal ideal of the convex subring O of K.

- Example: A Hardy field $K \supseteq \mathbb{R}$ is an H-field, with
 - $O = \{f \in K : \lim_{x \to +\infty} f \in \mathbb{R}\}$, the **bounded** elements, and
 - $\mathfrak{o} = \{f \in K : \lim_{x \to +\infty} f = 0\}$, the **infinitesimal** elements

- Other examples: various fields of transseries such as \mathbb{T} and \mathbb{T}_{log}
H-fields

- An **H-field** is an ordered differential field K such that:
 - (H1) for all $f \in K$, if $f > C_K$, then $\partial(f) > 0$;
 - (H2) $\mathcal{O} = C_K + \mathfrak{o}$ where

 $$
 \mathcal{O} = \{ g \in K : |g| \leq c \text{ for some } c \in C_K \}
 $$

 and \mathfrak{o} is the maximal ideal of the convex subring \mathcal{O} of K.
- **Example:** A Hardy field $K \supseteq \mathbb{R}$ is an H-field, with
 - $\mathcal{O} = \{ f \in K : \lim_{x \to +\infty} f \in \mathbb{R} \}$, the *bounded* elements, and
 - $\mathfrak{o} = \{ f \in K : \lim_{x \to +\infty} f = 0 \}$, the *infinitesimal* elements
- **Other examples:** various fields of transseries such as \mathbb{T} and \mathbb{T}_{\log}
- **Conway’s No**, the ordered field of surreal numbers is a proper class-sized H-field when equipped with the Berarducci-Mantova derivation ∂_{BM}
H-fields

- **An H-field** is an ordered differential field K such that:

 \[(H1) \text{ for all } f \in K, \text{ if } f > C_K, \text{ then } \partial(f) > 0;\]

 \[(H2) \mathcal{O} = C_K + \mathfrak{o} \text{ where}\]

 \[\mathcal{O} = \{g \in K : |g| \leq c \text{ for some } c \in C_K\}\]

 and \mathfrak{o} is the maximal ideal of the convex subring \mathcal{O} of K.

- **Example:** A Hardy field $K \supseteq \mathbb{R}$ is an H-field, with

 - $\mathcal{O} = \{f \in K : \lim_{x \to +\infty} f \in \mathbb{R}\}$, the *bounded* elements, and

 - $\mathfrak{o} = \{f \in K : \lim_{x \to +\infty} f = 0\}$, the *infinitesimal* elements

- **Other examples:** various fields of transseries such as \mathbb{T} and \mathbb{T}_{\log}

- **Conway’s No**, the ordered field of surreal numbers is a proper class-sized H-field when equipped with the Berarducci-Mantova derivation ∂_{BM}
H-fields

- **An H-field** is an ordered differential field K such that:
 - (H1) for all $f \in K$, if $f > C_K$, then $\partial(f) > 0$;
 - (H2) $\mathcal{O} = C_K + \mathcal{O}$ where

 $$\mathcal{O} = \{ g \in K : |g| \leq c \text{ for some } c \in C_K \}$$

 and \mathcal{O} is the maximal ideal of the convex subring \mathcal{O} of K.

- **Example**: A Hardy field $K \supseteq \mathbb{R}$ is an H-field, with
 - $\mathcal{O} = \{ f \in K : \lim_{x \to +\infty} f \in \mathbb{R} \}$, the *bounded* elements, and
 - $\mathcal{O} = \{ f \in K : \lim_{x \to +\infty} f = 0 \}$, the *infinitesimal* elements

- **Other examples**: various fields of transseries such as \mathbb{T} and \mathbb{T}_{\log}

- **Conway’s No**, the ordered field of surreal numbers is a proper class-sized H-field when equipped with the Berarducci-Mantova derivation ∂_{BM}
If K is an H-field, by **Liouville closure of K** we now mean “H-field extension of K that is also a Liouville closure of K in the previous sense”

Theorem (Aschenbrenner, van den Dries, 2002)

Let K be an H-field. Then one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K,

(II) K has exactly two Liouville closures up to isomorphism over K.

What causes one or two Liouville closures?
Liouville closures of H-fields

If K is an H-field, by **Liouville closure of K** we now mean “H-field extension of K that is also a Liouville closure of K in the previous sense”

Theorem (Aschenbrenner, van den Dries, 2002)

Let K be an H-field. Then one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K,

(II) K has exactly two Liouville closures up to isomorphism over K.

Liouville closures of H-fields

If K is an H-field, by **Liouville closure of K** we now mean “H-field extension of K that is also a Liouville closure of K in the previous sense”

Theorem (Aschenbrenner, van den Dries, 2002)

Let K be an H-field. Then one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K,

(II) K has exactly two Liouville closures up to isomorphism over K.

What causes one or two Liouville closures?
If K is an H-field, by \textbf{Liouville closure of K} we now mean “H-field extension of K that is also a Liouville closure of K in the previous sense”

Theorem (Aschenbrenner, van den Dries, 2002)

Let K be an H-field. Then one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K,

(II) K has exactly two Liouville closures up to isomorphism over K.

What causes one or two Liouville closures?
Liouville closures of H-fields

If K is an H-field, by **Liouville closure of K** we now mean "H-field extension of K that is also a Liouville closure of K in the previous sense"

Theorem (Aschenbrenner, van den Dries, 2002)

Let K be an H-field. Then one of the following occurs:

(I) K has exactly one Liouville closure up to isomorphism over K,

(II) K has exactly two Liouville closures up to isomorphism over K.

What causes one or two Liouville closures?
Let K be an H-field and let $f, g \in K$

- Define $f \lessdot g :\iff \exists c \in C_K^0 : |f| \leq c|g|$

The valuation of an H-field
Let K be an H-field and let $f, g \in K$

- Define $f \preceq g \iff \exists c \in C_K^0 : |f| \leq c|g|$
- Also define equivalence relation \simeq on K^\times:
 $f \simeq g \iff f \preceq g$ and $g \preceq f$
The valuation of an H-field

Let K be an H-field and let $f, g \in K$

- Define $f \preceq g : \iff \exists c \in C_K^> : |f| \leq c|g|

- Also define equivalence relation \sim on K^\times: $f \sim g : \iff f \preceq g$ and $g \preceq f$

- The equivalence classes vf are elements of an ordered abelian group $\Gamma_K := v(K^\times)$:

$$vf + vg = v(fg), \quad vf \geq vg \iff f \preceq g.$$
Let K be an H-field and let $f, g \in K$

- Define $f \preceq g :\iff \exists c \in C^>_K : |f| \leq c|g|$

- Also define equivalence relation \simeq on K^\times: $f \simeq g :\iff f \preceq g$ and $g \preceq f$

- The equivalence classes vf are elements of an ordered abelian group $\Gamma_K := \nu(K^\times)$:

$$vf + vg = \nu(fg), \quad vf \geq vg \iff f \preceq g.$$

- The map $f \mapsto vf : K^\times \to \Gamma$ is a valuation.
The valuation of an H-field

Let K be an H-field and let $f, g \in K$

- Define $f \preceq g : \iff \exists c \in \mathbb{C}_K : |f| \leq c|g|$
- Also define equivalence relation \asymp on K^\times:
 $f \asymp g : \iff f \preceq g$ and $g \preceq f$
- The equivalence classes vf are elements of an ordered abelian group $\Gamma_K := \nu(K^\times)$:
 $$vf + vg = \nu(fg), \quad vf \geq vg \iff f \preceq g.$$

- The map $f \mapsto vf : K^\times \to \Gamma$ is a valuation.
- Example: in $K = \mathbb{R}(x, \arctan(x)), x \preceq x^2$ and $\arctan(x) \asymp \pi$
Let K be an H-field and let $f, g \in K$

- Define $f \lesssim g : \iff \exists c \in C^>_{K} : |f| \leq c|g|$
- Also define equivalence relation \asymp on K^\times:

 \[f \asymp g : \iff f \preceq g \text{ and } g \preceq f \]

- The equivalence classes vf are elements of an ordered abelian group $\Gamma_K := v(K^\times)$:

 \[vf + vg = v(fg), \quad vf \geq vg \iff f \preceq g. \]

- The map $f \mapsto vf : K^\times \rightarrow \Gamma$ is a valuation.
- Example: in $K = \mathbb{R}(x, \arctan(x))$, $x \preceq x^2$ and $\arctan(x) \asymp \pi$
The valuation of an H-field

Let K be an H-field and let $f, g \in K$

- Define $f \preceq g :\iff \exists c \in C_K^> : |f| \leq c|g|$
- Also define equivalence relation \equiv on K^\times

 $f \equiv g :\iff f \preceq g$ and $g \preceq f$

- The equivalence classes vf are elements of an ordered abelian group $\Gamma_K := \nu(K^\times)$:

 $$vf + vg = \nu(fg), \quad vf \geq vg \iff f \preceq g.$$

- The map $f \mapsto vf : K^\times \to \Gamma$ is a valuation.
- Example: in $K = \mathbb{R}(x, \arctan(x))$, $x \preceq x^2$ and $\arctan(x) \preceq \pi$
The Asymptotic Couple of an H-field

The derivation ∂ induces a map

$$\gamma = vf \mapsto \gamma' = v(f') : \Gamma^\neq := \Gamma \setminus \{0\} \to \Gamma.$$

We set $\Psi := \{\gamma' - \gamma : \gamma \in \Gamma^\neq\}$. Then $\Psi < (\Gamma^0>)^\prime$.

\[\Gamma \uparrow \quad \gamma' \quad \rightarrow \Gamma \]

$\gamma^\dagger = \gamma' - \gamma$
Trichotomy for H-fields

Exactly one of the following statements holds:

(1) $\Psi < \beta < (\Gamma^0)'$ for a (necessarily unique) β. We call such a β a **gap** in K. Example: $K = \mathbb{R}$.

(2) Ψ has a largest element. In this case we say that K is **grounded**. Example: $K = \mathbb{R}(x, \log x)$.

(3) $\sup \Psi$ does not exist; equivalently: $\Gamma = (\Gamma \neq \Gamma)'$. In this case we say that K has **asymptotic integration**. Example: $K = \mathbb{R}(x, \log(x), \log \log(x), \log \log \log(x), \ldots)$.

In case (1) there are two Liouville closures. Why? You can integrate β in such a way that its antiderivative is either infinite or infinitesimal, your choice!

In case (2) there is one Liouville closure. What about case (3)?
Trichotomy for H-fields

Exactly one of the following statements holds:

1. $\Psi < \beta < (\Gamma^0)'$ for a (necessarily unique) β. We call such a β a gap in K. Example: $K = \mathbb{R}$.

2. Ψ has a largest element. In this case we say that K is grounded. Example: $K = \mathbb{R}(x, \log x)$.

In case (1) there are two Liouville closures. Why? You can integrate β in such a way that its antiderivative is either infinite or infinitesimal, your choice!

In case (2) there is one Liouville closure. What about case (3)?
Trichotomy for H-fields

Exactly one of the following statements holds:

1. $\Psi < \beta < (\Gamma^0)'$ for a (necessarily unique) β. We call such a β a **gap** in K. Example: $K = \mathbb{R}$.

2. Ψ has a largest element. In this case we say that K is **grounded**. Example: $K = \mathbb{R}(x, \log x)$.

3. $\sup \Psi$ does not exist; equivalently: $\Gamma = (\Gamma^\neq)'$. In this case we say that K has **asymptotic integration**. Example: $K = \mathbb{R}(x, \log(x), \log \log(x), \log \log \log(x), \ldots)$.

In case (1) there are two Liouville closures. Why? You can integrate β in such a way that its antiderivative is either infinite or infinitesimal, your choice!

In case (2) there is one Liouville closure. What about case (3)?
Trichotomy for H-fields

Exactly one of the following statements holds:

1. $\Psi < \beta < (\Gamma^\geq 0)'$ for a (necessarily unique) β. We call such a β a gap in K. Example: $K = \mathbb{R}$.

2. Ψ has a largest element. In this case we say that K is grounded. Example: $K = \mathbb{R}(x, \log x)$.

3. $\sup \Psi$ does not exist; equivalently: $\Gamma = (\Gamma \neq)'$. In this case we say that K has asymptotic integration. Example: $K = \mathbb{R}(x, \log(x), \log \log(x), \log \log \log(x), \ldots)$.

In case (1) there are two Liouville closures. Why? You can integrate β in such a way that its antiderivative is either infinite or infinitesimal, your choice!

In case (2) there is one Liouville closure. What about case (3)?
Trichotomy for H-fields

Exactly one of the following statements holds:

1. $\Psi < \beta < (\Gamma^0)'$ for a (necessarily unique) β. We call such a β a **gap** in K. Example: $K = \mathbb{R}$.

2. Ψ has a largest element. In this case we say that K is **grounded**. Example: $K = \mathbb{R}(x, \log x)$.

3. $\sup \Psi$ does not exists; equivalently: $\Gamma = (\Gamma^\neq)'$. In this case we say that K has **asymptotic integration**. Example: $K = \mathbb{R}(x, \log(x), \log \log(x), \log \log \log(x), \ldots)$.

- In case (1) there are two Liouville closures. Why? You can integrate β in such a way that its antiderivative is either infinite or infinitesimal, your choice!

- In case (2) there is one Liouville closure.
Trichotomy for H-fields

Exactly one of the following statements holds:

1. $\Psi < \beta < (\Gamma > 0)'$ for a (necessarily unique) β. We call such a β a \textbf{gap} in K. Example: $K = \mathbb{R}$.

2. Ψ has a largest element. In this case we say that K is \textbf{grounded}. Example: $K = \mathbb{R}(x, \log x)$.

3. $\sup \Psi$ does not exist; equivalently: $\Gamma = (\Gamma \neq)'$. In this case we say that K has \textbf{asymptotic integration}. Example: $K = \mathbb{R}(x, \log(x), \log \log(x), \log \log \log(x), \ldots)$.

- In case (1) there are two Liouville closures. Why? You can integrate β in such a way that its antiderivative is either infinite or infinitesimal, your choice!
- In case (2) there is one Liouville closure.
- What about case (3)?
Trichotomy for H-fields

Exactly one of the following statements holds:

1. $\Psi < \beta < (\Gamma > 0)'$ for a (necessarily unique) β. We call such a β a gap in K. Example: $K = \mathbb{R}$.

2. Ψ has a largest element. In this case we say that K is grounded. Example: $K = \mathbb{R}(x, \log x)$.

3. $\sup \Psi$ does not exist; equivalently: $\Gamma = (\Gamma \neq)'$. In this case we say that K has asymptotic integration. Example: $K = \mathbb{R}(x, \log(x), \log \log(x), \log \log \log(x), \ldots)$.

- In case (1) there are two Liouville closures. Why? You can integrate β in such a way that its antiderivative is either infinite or infinitesimal, your choice!

- In case (2) there is one Liouville closure.

- What about case (3)?
Trichotomy for H-fields

Exactly one of the following statements holds:

1. $\Psi < \beta < (\Gamma^0)'$ for a (necessarily unique) β. We call such a β a **gap** in K. Example: $K = \mathbb{R}$.

2. Ψ has a largest element. In this case we say that K is **grounded**. Example: $K = \mathbb{R}(x, \log x)$.

3. $\sup \Psi$ does not exist; equivalently: $\Gamma = (\Gamma^\neq)'$. In this case we say that K has **asymptotic integration**. Example: $K = \mathbb{R}(x, \log(x), \log \log(x), \log \log \log(x), \ldots)$.

- In case (1) there are two Liouville closures. Why? You can integrate β in such a way that its antiderivative is either infinite or infinitesimal, your choice!

- In case (2) there is one Liouville closure.

- What about case (3)?
How do gaps occur in Liouville extensions?

Let K be a real closed H-field

- If K is Liouville closed, then K does not have a gap.
How do gaps occur in Liouville extensions?

Let K be a real closed H-field

- If K is Liouville closed, then K does not have a gap.
- If $L = K(y)$ with $y' = f \in K$ ($y = \int f$), then L has a gap if and only if K has a gap.

In fact, one can detect in K already whether some $g \in K$ creates a gap over K, i.e., $z = \exp(\int g)$ is a gap in $K(z)$...
Let K be a real closed H-field

- If K is Liouville closed, then K does not have a gap.
- If $L = K(y)$ with $y' = f \in K$ ($y = \int f$), then L has a gap if and only if K has a gap.
- If $L = K(z)$ with $z \neq 0$, $z'/z = g \in K$ ($z = \exp \int g$), then L may have a gap even if K does not have a gap.
How do gaps occur in Liouville extensions?

Let K be a real closed H-field

- If K is Liouville closed, then K does not have a gap.
- If $L = K(y)$ with $y' = f \in K$ ($y = \int f$), then L has a gap if and only if K has a gap.
- If $L = K(z)$ with $z \neq 0$, $z'/z = g \in K$ ($z = \exp \int g$), then L may have a gap even if K does not have a gap.
Let K be a real closed H-field

- If K is Liouville closed, then K does not have a gap.
- If $L = K(y)$ with $y' = f \in K \ (y = \int f)$, then L has a gap if and only if K has a gap.
- If $L = K(z)$ with $z \neq 0, \ z'/z = g \in K \ (z = \exp \int g)$, then L may have a gap even if K does not have a gap.

In fact, one can detect in K already whether some $g \in K$ creates a gap over K, i.e., $z = \exp \int g$ is a gap in $K(z)$...
Proposition

The following are equivalent, for a real closed H-field K:

1. $\forall f \exists g \left[|g| > C_K \text{ and } f - g^{\dagger\dagger} \succcurlyeq g^{\dagger} \right]$, where $g^{\dagger} := \partial(g)/g$.

2. K has asymptotic integration, and no element of K creates a gap.

We say that K is λ-free if it satisfies condition (1) in the proposition.

Theorem (G.)

Let K be an H-field. Then

1. K has exactly one Liouville closure up to isomorphism over K iff (a) K is grounded, or (b) K has asymptotic integration and is λ-free.

2. K has exactly two Liouville closures up to isomorphism over K iff (c) K has asymptotic integration and is not λ-free, or (d) K has a gap.
Liouville closures of H-fields

Proposition

The following are equivalent, for a real closed H-field K:

1. $\forall f \exists g[|g| > C_K \text{ and } f - g^{\ddagger} \succ g^{\dagger}]$, where $g^{\dagger} := \partial(g)/g$.

2. K has asymptotic integration, and no element of K creates a gap.

We say that K is λ-free if it satisfies condition (1) in the proposition.
Proposition

The following are equivalent, for a real closed H-field K:

1. $\forall f \exists g[|g| > C_K$ and $f - g^{\dagger\dagger} \gtrsim g^\dagger]$, where $g^\dagger := \partial(g)/g$.
2. K has asymptotic integration, and no element of K creates a gap.

We say that K is λ-free if it satisfies condition (1) in the proposition.

Theorem (G.)

Let K be an H-field. Then

1. K has exactly one Liouville closure up to isomorphism over K iff
 (a) K is grounded, or
 (b) K has asymptotic integration and is λ-free
2. K has exactly two Liouville closures up to isomorphism over K iff
 (c) K has asymptotic integration and is not λ-free, or
 (d) K has a gap.
Liouville closures of H-fields

Proposition

The following are equivalent, for a real closed H-field K:

1. $\forall f \exists g[|g| > C_K$ and $f - g^{\dagger\dagger} \succcurlyeq g^{\dagger}]$, where $g^{\dagger} := \partial(g)/g$.
2. K has asymptotic integration, and no element of K creates a gap.

We say that K is λ-free if it satisfies condition (1) in the proposition.

Theorem (G.)

Let K be an H-field. Then

1. K has exactly one Liouville closure up to isomorphism over K iff
 a. K is grounded, or
 b. K has asymptotic integration and is λ-free

2. K has exactly two Liouville closures up to isomorphism over K iff
 c. K has asymptotic integration and is not λ-free, or
 d. K has a gap.
Liouville closures of H-fields

Proposition

The following are equivalent, for a real closed H-field K:

(1) $\forall f \exists g \exists g[|g| > C_K$ and $f - g^{\dagger \dagger} \succcurlyeq g^{\dagger}]$, where $g^{\dagger} := \partial(g)/g$.

(2) K has asymptotic integration, and no element of K creates a gap.

We say that K is λ-free if it satisfies condition (1) in the proposition.

Theorem (G.)

Let K be an H-field. Then

(1) K has exactly one Liouville closure up to isomorphism over K iff

(a) K is grounded, or

(b) K has asymptotic integration and is λ-free

(2) K has exactly two Liouville closures up to isomorphism over K iff

(c) K has asymptotic integration and is not λ-free, or

(d) K has a gap.
Proof sketch

Assume K has asymptotic integration and is λ-free. Want to show that K has one Liouville closure up to isomorphism over K.

Proof by procrastination!

The primary source of Two Liouville Closures is the occurrence of gaps. λ-freeness is a gap prevention property in the sense that you can’t create a gap in “the next step.”

I proved that λ-freeness is preserved under adjoining integrals and adjoining exponential integrals. Thus we “kick the can down the road”: in constructing a Liouville closure, we are forever λ-free, so we are always at least two steps away from creating a gap, so a gap never gets created!
Proof sketch

- Assume K has asymptotic integration and is λ-free. Want to show that K has one Liouville closure up to isomorphism over K.
- Proof by procrastination!
Proof sketch

- Assume K has asymptotic integration and is λ-free. Want to show that K has one Liouville closure up to isomorphism over K.
- Proof by procrastination!
- The primary source of Two Liouville Closures is the occurrence of gaps.
Proof sketch

- Assume K has asymptotic integration and is λ-free. Want to show that K has one Liouville closure up to isomorphism over K.
- Proof by procrastination!
- The primary source of Two Liouville Closures is the occurrence of gaps.
- λ-freeness is a gap prevention property in the sense that you can’t create a gap in “the next step”
Proof sketch

- Assume K has asymptotic integration and is λ-free. Want to show that K has one Liouville closure up to isomorphism over K.
- Proof by procrastination!
- The primary source of Two Liouville Closures is the occurrence of gaps.
- λ-freeness is a gap prevention property in the sense that you can’t create a gap in “the next step”
- I proved that λ-freeness is preserved under adjoining integrals and adjoining exponential integrals
Proof sketch

- Assume K has asymptotic integration and is λ-free. Want to show that K has one Liouville closure up to isomorphism over K.
- Proof by procrastination!
- The primary source of Two Liouville Closures is the occurrence of gaps.
- λ-freeness is a **gap prevention property** in the sense that you can’t create a gap in “the next step”
- I proved that λ-freeness is preserved under adjoining integrals and adjoining exponential integrals
- Thus we “kick the can down the road”: in constructing a Liouville closure, we are forever λ-free, so we are always at least two steps away from creating a gap, so a gap never gets created!
Proof sketch

- Assume K has asymptotic integration and is λ-free. Want to show that K has one Liouville closure up to isomorphism over K.
- Proof by procrastination!
- The primary source of Two Liouville Closures is the occurrence of gaps.
- λ-freeness is a **gap prevention property** in the sense that you can’t create a gap in “the next step”
- I proved that λ-freeness is preserved under adjoining integrals and adjoining exponential integrals
- Thus we “kick the can down the road”: in constructing a Liouville closure, we are forever λ-free, so we are always at least two steps away from creating a gap, so a gap never gets created!
Proof sketch

- Assume K has asymptotic integration and is λ-free. Want to show that K has one Liouville closure up to isomorphism over K.
- Proof by procrastination!
- The primary source of Two Liouville Closures is the occurrence of gaps.
- λ-freeness is a **gap prevention property** in the sense that you can’t create a gap in “the next step”
- I proved that λ-freeness is preserved under adjoining integrals and adjoining exponential integrals
- Thus we “kick the can down the road”: in constructing a Liouville closure, we are forever λ-free, so we are always at least two steps away from creating a gap, so a gap never gets created!