Towards a model theory of logarithmic transseries

Allen Gehret

University of Illinois at Urbana-Champaign
agehret2@illinois.edu

Thesis Defense, 243 Mechanical Engineering Building
11am, April 21, 2017
The (Ordered) Valued Field \mathbb{T}_{\log}

Definition (The valued field \mathbb{T}_{\log} of logarithmic transseries)

$$\mathbb{T}_{\log} := \bigcup_{n} \mathbb{R}[[\mathcal{L}_n]] \quad \text{union of spherically complete Hahn fields}$$

where \mathcal{L}_n is the **ordered group of logarithmic transmonomials**:

$$\mathcal{L}_n := \ell_0 \cdot \ldots \cdot \ell_n = \{\ell_0^r \cdot \ldots \cdot \ell_n^r : r_i \in \mathbb{R}\}, \quad \ell_0 = x, \ell_{m+1} = \log \ell_m$$

ordered such that $\ell_i \succ \ell_{i+1}^m > 1$ for all $m \geq 1$, $i = 0, \ldots, n - 1$.

Typical elements of \mathbb{T}_{\log} look like:

- $-2x^3 \log x + \sqrt{x} + 2 + \frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots$

- $\frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \cdots + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \cdots$
The (Ordered) Valued Field \mathbb{T}_{\log}

Definition (The valued field \mathbb{T}_{\log} of logarithmic transseries)

$$\mathbb{T}_{\log} := \bigcup_n \mathbb{R}[[\mathcal{L}_n]]$$

union of spherically complete Hahn fields

where \mathcal{L}_n is the ordered group of logarithmic transmonomials:

$$\mathcal{L}_n := \ell^0 \cdots \ell^n = \{ \ell^0_r \cdots \ell^n_r : r_i \in \mathbb{R} \}, \quad \ell_0 = x, \ell_{m+1} = \log \ell_m$$

ordered such that $\ell_i > \ell_{i+1}^m > 1$ for all $m \geq 1$, $i = 0, \ldots, n - 1$.

Typical elements of \mathbb{T}_{\log} look like:

- $-2x^3 \log x + \sqrt{x} + 2 + \frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots$

- $\frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \cdots + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \cdots$

Note: \mathbb{T}_{\log} is a real closed field and thus has a definable ordering.
The (Ordered) Valued Field \mathbb{T}_log

Definition (The valued field \mathbb{T}_log of logarithmic transseries)

$$\mathbb{T}_\text{log} := \bigcup_n \mathbb{R}[[\mathcal{L}_n]]$$

union of spherically complete Hahn fields

where \mathcal{L}_n is the *ordered group of logarithmic transmonomials*:

$$\mathcal{L}_n := \ell_0^\mathbb{R} \cdots \ell_n^\mathbb{R} = \{ \ell_0^{r_0} \cdots \ell_n^{r_n} : r_i \in \mathbb{R} \}, \quad \ell_0 = x, \ell_{m+1} = \log \ell_m$$

ordered such that $\ell_i \succ \ell_{i+1} \succ 1$ for all $m \geq 1$, $i = 0, \ldots, n - 1$.

Typical elements of \mathbb{T}_log look like:

- $-2x^3 \log x + \sqrt{x} + 2 + \frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots$
- $\frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots + \frac{1}{\log x} + \frac{1}{(\log x)^2} + \cdots + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \cdots$

Note: \mathbb{T}_log is a real closed field and thus has a definable ordering. Also: Residue field is \mathbb{R} and value group Γ_log is additive copy of $\bigcup_n \mathcal{L}_n$ with reverse ordering.
The derivation on \mathbb{T}_{\log}

\mathbb{T}_{\log} comes equipped with the usual termwise derivative and logarithmic derivative:

$$f \mapsto f'$$

$$f \mapsto f^\dagger := \frac{f'}{f}, \quad (f \neq 0)$$

subject to the usual rules: $\ell_0' = 1, \ell_1' = \ell_0^{-1}$, etc.

For example:

- $(x^3 \log x + \sqrt{x} + 2 + \cdots)' = 3x^2 \log x + x^2 + \frac{1}{2x^{1/2}} + \cdots$
- $\ell_n^\dagger = \frac{1}{\ell_0 \ell_1 \cdots \ell_n}$
- $(\frac{1}{\log \log x} + \frac{1}{(\log \log x)^2} + \cdots)' = -\frac{1}{x \log x (\log \log x)^2} - \frac{2}{x \log x (\log \log x)^3} + \cdots$
- $(\ell_0^r \cdots \ell_n^r)^\dagger = r_0 \ell_0^{-1} + r_1 \ell_0^{-1} \ell_1^{-1} + \cdots + r_n \ell_0^{-1} \cdots \ell_n^{-1}$

This derivative makes \mathbb{T}_{\log} into a differential field with field of constants \mathbb{R}.
Definition

A field K is an ordered valued differential field. We call K an **H-field** if

1. For all $f \in K$, if $f > C$, then $f' > 0$;
2. $O = C + \mathfrak{o}$ where $O = \{ g \in K : |g| \leq c \text{ for some } c \in C \}$ is the (convex) valuation ring of K and \mathfrak{o} is the maximal ideal of O.

Example

T_{\log} is an H-field, also any Hardy field containing \mathbb{R} is an H-field.

Example

T, the differential field of logarithmic-exponential transseries is naturally an H-field, and contains T_{\log}. It is closed under exp. Typical element:

$$-3e^x + e^{\frac{e^x}{\log x}} + e^{\frac{e^x}{\log^2 x}} + e^{\frac{e^x}{\log^3 x}} + \cdots - x^{11} + 7 + \frac{\pi}{x} + \frac{1}{x \log x} + \cdots + e^{-x} + 2e^{-x^2} + \cdots$$
The asymptotic couple \((\Gamma, \psi)\) of an \(H\)-field \(K\)

Fact

For \(f \in K^\times\) such that \(v(f) \neq 0\), the values \(v(f')\) and \(v(f^\dagger)\) depend only on \(v(f)\).

\[
\begin{array}{ccc}
K & \overset{'}{\rightarrow} & K \\
\downarrow v & & \downarrow v \\
\Gamma & \overset{'}{\rightarrow} & \Gamma
\end{array} \quad \begin{array}{ccc}
K & \overset{^\dagger}{\rightarrow} & K \\
\downarrow v & & \downarrow v \\
\Gamma & \overset{\psi}{\rightarrow} & \Gamma
\end{array}
\]

\((\Gamma \text{ is the value group of } K)\)
The asymptotic couple \((\Gamma, \psi)\) of an \(H\)-field \(K\)

Fact

For \(f \in K^\times\) such that \(v(f) \neq 0\), the values \(v(f')\) and \(v(f^\dagger)\) depend only on \(v(f)\).

\[
\begin{align*}
K & \xrightarrow{'} K \\
v & \downarrow \downarrow v \\
\Gamma & \xrightarrow{...} \Gamma
\end{align*}
\[
\begin{align*}
K & \xrightarrow{\dagger} K \\
v & \downarrow \downarrow v \\
\Gamma & \xrightarrow{\psi} \Gamma
\end{align*}
\]

\((\Gamma \text{ is the value group of } K)\)

Definition (Rosenlicht)

The pair \((\Gamma, \psi)\) is the *asymptotic couple of \(K\).*
The asymptotic couple \((\Gamma, \psi)\) of an \(H\)-field \(K\)

Fact

For \(f \in K^\times\) such that \(v(f) \neq 0\), the values \(v(f')\) and \(v(f^\dagger)\) depend only on \(v(f)\).

\[
\begin{array}{ccc}
K & \rightarrow & K \\
\downarrow v & & \downarrow v \\
\Gamma & \rightarrow & \Gamma
\end{array}
\quad
\begin{array}{ccc}
K & \rightarrow & K \\
\downarrow v & & \downarrow v \\
\Gamma & \rightarrow & \Gamma
\end{array}
\]

\((\Gamma\ is\ the\ value\ group\ of\ K)\)

Definition (Rosenlicht)

The pair \((\Gamma, \psi)\) is the asymptotic couple of \(K\).

Theorem (G)

\(\text{Th}(\Gamma_{\log}, \psi)\), the asymptotic couple of \(\mathbb{T}_{\log}\), has quantifier elimination in a natural language and is model complete and has NIP.
Both \mathbb{T} and \mathbb{T}_{\log} enjoy two additional (first-order) properties:

- **ω-free**: this is a very strong and robust property which prevents certain deviant behavior
 \[
 \forall f \neq 0 \exists g \neq 1[g' \simeq f] \quad \& \quad \forall f \exists g \succ 1[f + 2g^{\dagger \dagger'} + 2(g^{\dagger \dagger})^2 \succeq g^{\dagger}]
 \]

- **newtonian**: this is a variant of “differential-henselian”; it essentially means that you can simulate being differential henselian arbitrarily well by sufficient coarsenings and compositional conjugations ($\partial \mapsto \phi \partial$).
H-fields: two technical properties

Both \mathbb{T} and \mathbb{T}_{\log} enjoy two additional (first-order) properties:

- **ω-free**: this is a very strong and robust property which prevents certain deviant behavior
 \[
 \forall f \neq 0 \exists g \neq 1[g' \simeq f] \quad \& \quad \forall f \exists g \succ 1[f + 2g^{\dagger\dagger} + 2(g^{\dagger\dagger})^2 \simeq g^{\dagger}]
 \]

- **newtonian**: this is a variant of “differential-henselian”; it essentially means that you can simulate being differential henselian arbitrarily well by sufficient coarsenings and compositional conjugations ($\partial \mapsto \phi \partial$).

\mathbb{T}_{\log} satisfies both of these properties because it has integration and is a union of spherically complete H-fields, each with a smallest “comparability class”:

$$\mathbb{T}_{\log} := \bigcup_n \mathbb{R}[[\ell_0^\mathbb{R} \cdots \ell_n^\mathbb{R}]]$$
Another nice property:

Definition

We call a real closed H-field K **Liouville closed** if

$$K' = K \quad \text{and} \quad (K^\times)^\dagger = K$$
Another nice property:

Definition

We call a real closed H-field K **Liouville closed** if

\[K' = K \quad \text{and} \quad (K^\times)^\dagger = K \]

\mathbb{T} is Liouville closed, however...
Another nice property:

Definition

We call a real closed H-field K **Liouville closed** if

$$K' = K \quad \text{and} \quad (K^\times)^\dagger = K$$

T is Liouville closed, however...

T_{\log} is NOT Liouville closed:

$$(T_{\log})' = T_{\log} \quad \text{but} \quad (T_{\log}^\times)^\dagger \neq T_{\log}$$

E.g., an element f such that $f^\dagger = 1$ would have to behave like e^x. ..
Let $\mathcal{L} = \{0, 1, +, -, \cdot, \partial, \leq, \preceq\}$

The following result is the starting point for the model theory of \mathbb{T}_{\log}:

Theorem (Aschenbrenner, van den Dries, van der Hoeven, 2015)

$\text{Th}_{\mathcal{L}}(\mathbb{T})$ is axiomatized by:
The field \mathbb{T}: a success story

Let $\mathcal{L} = \{0, 1, +, -, \cdot, \partial, \leq, \preceq\}$

The following result is the starting point for the model theory of \mathbb{T}_{log}:

Theorem (Aschenbrenner, van den Dries, van der Hoeven, 2015)

$\text{Th}_\mathcal{L}(\mathbb{T})$ is axiomatized by:

- real closed, ω-free, newtonian, H-field such that $\forall \epsilon \prec 1, \partial(\epsilon) \prec 1$;
- Liouville closed
The field \mathbb{T}: a success story

Let $\mathcal{L} = \{0, 1, +, -, \cdot, \partial, \leq, \preceq\}$

The following result is the starting point for the model theory of \mathbb{T}_{\log}:

Theorem (Aschenbrenner, van den Dries, van der Hoeven, 2015)

$Th_{\mathcal{L}}(\mathbb{T})$ is axiomatized by:

- **real closed, ω-free, newtonian, H-field such that $\forall \epsilon \prec 1, \partial(\epsilon) \prec 1$;**
- **Liouville closed**
 - $K' = K$
 - $(K^\times)^\dagger = K$
The field \mathbb{T}: a success story

Let $\mathcal{L} = \{0, 1, +, -, \cdot, \partial, \le, \preccurlyeq\}$

The following result is the starting point for the model theory of \mathbb{T}_{\log}:

Theorem (Aschenbrenner, van den Dries, van der Hoeven, 2015)

$\text{Th}_{\mathcal{L}}(\mathbb{T})$ is axiomatized by:

- real closed, ω-free, newtonian, H-field such that $\forall \epsilon \prec 1, \partial(\epsilon) \prec 1$;
- Liouville closed
 - $K' = K$
 - $(K \times)^{\dagger} = K$

Furthermore, \mathbb{T} is model complete as an \mathcal{L}-structure.

Recall: a structure M is *model complete* if every definable subset of M^n is existentially definable (for every n).
The field \mathbb{T}: a success story

Let $\mathcal{L} = \{0, 1, +, -, \cdot, \partial, \leq, \preceq\}$

The following result is the starting point for the model theory of \mathbb{T}_{\log}:

Theorem (Aschenbrenner, van den Dries, van der Hoeven, 2015)

$\text{Th}_{\mathcal{L}}(\mathbb{T})$ is axiomatized by:
- real closed, ω-free, newtonian, H-field such that $\forall \epsilon \prec 1, \partial(\epsilon) \prec 1$;
- Liouville closed
 - $K' = K$
 - $(K \times)^\dagger = K$

Furthermore, \mathbb{T} is model complete as an \mathcal{L}-structure.

Recall: a structure M is *model complete* if every definable subset of M^n is existentially definable (for every n). A starting point for model completeness of \mathbb{T}_{\log} is to try to make both $(\mathbb{T}_{\log} \times)^\dagger$ and its complement existentially definable.
Investigating \((\mathbb{T}_{\log}^\times)^\dagger\)

\[f \in (\mathbb{T}_{\log}^\times)^\dagger \iff \text{there exists } g \in \mathbb{T}_{\log}^\times \text{ such that } g^\dagger = f \]
Investigating $(\mathbb{T}^\times_{\log})^\dagger$

$f \in (\mathbb{T}^\times_{\log})^\dagger \iff \text{there exists } g \in \mathbb{T}^\times_{\log} \text{ such that } g^\dagger = f$

Given $f \in \mathbb{T}^\times_{\log}$, we can write it uniquely as

$$f = c \ell^r_0 \cdots \ell^r_n (1 + \epsilon) \text{ for some infinitesimal } \epsilon \prec 1 \text{ and some } c \in \mathbb{R}^\times$$
Investigating \((\mathbb{T}^\times_\log)^\dagger\)

\[f \in (\mathbb{T}^\times_\log)^\dagger \iff \text{there exists } g \in \mathbb{T}^\times_\log \text{ such that } g^\dagger = f \]

Given \(f \in \mathbb{T}^\times_\log\), we can write it uniquely as

\[f = c\ell_0^r \cdots \ell_n^r (1 + \epsilon) \quad \text{for some infinitesimal } \epsilon \prec 1 \text{ and some } c \in \mathbb{R}^\times \]

Then we compute the logarithmic derivative:

\[(c\ell_0^r \cdots \ell_n^r (1 + \epsilon))^\dagger = r_0\ell_0^{-1} + r_1\ell_0^{-1}\ell_1^{-1} + \cdots + r_n\ell_0^{-1} \cdots \ell_n^{-1} + \frac{\epsilon'}{1 + \epsilon} \]

"small"
Investigating \((\mathbb{T}_{\log}^\times)^\dagger\)

\[f \in (\mathbb{T}_{\log}^\times)^\dagger \iff \text{there exists } g \in \mathbb{T}_{\log}^\times \text{ such that } g^\dagger = f \]

Given \(f \in \mathbb{T}_{\log}^\times\), we can write it uniquely as

\[f = c\ell_0^{r_0} \cdots \ell_n^{r_n}(1 + \epsilon) \quad \text{for some infinitesimal } \epsilon < 1 \text{ and some } c \in \mathbb{R}^\times \]

Then we compute the logarithmic derivative:

\[(c\ell_0^{r_0} \cdots \ell_n^{r_n}(1 + \epsilon))^\dagger = r_0\ell_0^{-1} + r_1\ell_0^{-1}\ell_1^{-1} + \cdots + r_n\ell_0^{-1} \cdots \ell_n^{-1} + \frac{\epsilon'}{1 + \epsilon} \]

"small"

Note: \(\nu(\ell_0^{-1} \cdots \ell_n^{-1}) \in \Psi := \psi(\Gamma_{\log}) \) and \(\nu(\epsilon'/(1 + \epsilon)) > \Psi\).
f \in (\mathbb{T}_{\log}^\times)^\dagger \iff \text{there exists } g \in \mathbb{T}_{\log}^\times \text{ such that } g^\dagger = f

Given \(f \in \mathbb{T}_{\log}^\times \), we can write it uniquely as

\[f = c \ell_0^r \cdots \ell_n^r (1 + \epsilon) \quad \text{for some infinitesimal } \epsilon \prec 1 \text{ and some } c \in \mathbb{R}^\times \]

Then we compute the logarithmic derivative:

\[
(c \ell_0^r \cdots \ell_n^r (1 + \epsilon))^\dagger = r_0 \ell_0^{-1} + r_1 \ell_0^{-1} \ell_1^{-1} + \cdots + r_n \ell_0^{-1} \cdots \ell_n^{-1} + \frac{\epsilon'}{1 + \epsilon} \quad \text{"small"}
\]

Note: \(\nu(\ell_0^{-1} \cdots \ell_n^{-1}) \in \Psi := \psi(\Gamma_{\log}) \) and \(\nu(\epsilon'/(1 + \epsilon)) > \Psi \).

Fact

\(f \not\in (\mathbb{T}_{\log}^\times)^\dagger \iff \text{there exists } g \in \mathbb{T}_{\log}^\times \text{ such that } \nu(f - g^\dagger) \in \Psi^\downarrow \setminus \Psi \)
Introducing LD-H-fields

From now on all H-fields will have asymptotic integration ($\Gamma = (\Gamma \neq)'$).

Let K be an H-field and $LD \subseteq K$.

We call the pair (K, LD) an LD-H-field if:

LD1 LD is a C_K-vector subspace of K;

LD2 $(K^\times)^\dagger \subseteq LD$;

LD3 $I(K) := \{ y \in K : y \preceq f' \text{ for some } f \in \mathcal{O} \} \subseteq LD$; and

LD4 $v(LD) \subseteq \Psi \cup (\Gamma >)' \cup \{ \infty \}$.

Example $(T \log, (T \times \log)\dagger)$ and (T, T) are both \(\Psi\)-closed LD-H-fields.
Introducing LD-H-fields

From now on all H-fields will have asymptotic integration ($\Gamma = (\Gamma \neq)'$). Let K be an H-field and $LD \subseteq K$.

We call the pair (K, LD) an **LD-H-field** if:

LD1 LD is a C_K-vector subspace of K;

LD2 $(K^\times)\dagger \subseteq LD$;

LD3 $I(K) := \{y \in K : y \preceq f' \text{ for some } f \in O\} \subseteq LD$; and

LD4 $v(LD) \subseteq \Psi \cup (\Gamma^>')' \cup \{\infty\}$.

We say an LD-H-field (K, LD) is **Ψ-closed** if:

E1 For every $a \in K \setminus LD$, there is $b \in LD$ such that $v(a - b) \in \Psi \downarrow \setminus \Psi$; and

E2 $LD = (K^\times)\dagger$.

Example (Tlog, $(\mathrm{Tlog} \times \mathrm{Tlog})\dagger$) and ($\mathrm{Tlog}$, Tlog) are both Ψ-closed LD-H-fields.
Introducing LD-H-fields

From now on all H-fields will have asymptotic integration ($\Gamma = (\Gamma \not>)'$).

Let K be an H-field and $LD \subseteq K$.

We call the pair (K, LD) an LD-H-field if:

LD1 LD is a C_K-vector subspace of K;

LD2 $(K^\times)^\dagger \subseteq LD$;

LD3 $I(K) := \{ y \in K : y \preccurlyeq f' \text{ for some } f \in \mathcal{O} \} \subseteq LD$; and

LD4 $v(LD) \subseteq \Psi \cup (\Gamma^>)' \cup \{\infty\}$.

We say an LD-H-field (K, LD) is Ψ-closed if:

E1 For every $a \in K \setminus LD$, there is $b \in LD$ such that $v(a - b) \in \Psi \downarrow \setminus \Psi$; and

E2 $LD = (K^\times)^\dagger$.

Example

$(\mathbb{T}_{log}, (\mathbb{T}^\times)^\dagger_{log})$ and (\mathbb{T}, \mathbb{T}) are both Ψ-closed LD-H-fields.

Allen Gehret (UIUC) Logarithmic transseries Thesis Defense
Model completeness conjecture for T_{log}

Let $\mathcal{L}_{\text{LD}} := \mathcal{L} \cup \{\text{LD}\}$ where LD is a unary relation symbol.
Model completeness conjecture for T_{\log}

Let $\mathcal{L}_{LD} := \mathcal{L} \cup \{LD\}$ where LD is a unary relation symbol. Let T_{\log} be the \mathcal{L}_{LD}-theory whose models are precisely the LD-H-fields (K, LD) such that:

1. K is real closed, ω-free, and newtonian;
2. (K, LD) is Ψ-closed; and
3. $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$, where (Γ, ψ) is the asymptotic couple of K.

Conjecture

The theory T_{\log} is model complete.

Embedding version of conjecture

Let (K, LD) and (L, LD_1) be models of T_{\log} and suppose (E, LD_0) is an ω-free LD-H-subfield of (K, LD) with E_1 such that $(Q \Gamma E, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$. Let $i : (E, LD_0) \to (L, LD_1)$ be an embedding of LD-H-fields. Assume (L, LD_1) is $|K|^+$ saturated. Then i extends to an embedding $(K, LD) \to (L, LD_1)$ of LD-H-fields.
Model completeness conjecture for T_{\log}

Let $\mathcal{L}_{LD} := \mathcal{L} \cup \{LD\}$ where LD is a unary relation symbol. Let T_{\log} be the \mathcal{L}_{LD}-theory whose models are precisely the LD-H-fields (K, LD) such that:

1. K is real closed, ω-free, and newtonian;
2. (K, LD) is Ψ-closed; and
3. $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$, where (Γ, ψ) is the asymptotic couple of K.

Conjecture

The theory T_{\log} is model complete.
Model completeness conjecture for T_{log}

Let $\mathcal{L}_{LD} := \mathcal{L} \cup \{LD\}$ where LD is a unary relation symbol. Let T_{log} be the \mathcal{L}_{LD}-theory whose models are precisely the LD-H-fields (K, LD) such that:

1. K is real closed, ω-free, and newtonian;
2. (K, LD) is Ψ-closed; and
3. $(\Gamma, \psi) \models \text{Th}(\Gamma_{\text{log}}, \psi)$, where (Γ, ψ) is the asymptotic couple of K.

Conjecture

The theory T_{log} is model complete.

Embedding version of conjecture

Let (K, LD) and (L, LD_1) be models of T_{log} and suppose (E, LD_0) is an ω-free LD-H-subfield of (K, LD) with E_1 such that $(\mathbb{Q}E, \psi) \models \text{Th}(\Gamma_{\text{log}}, \psi)$. Let $i : (E, LD_0) \to (L, LD_1)$ be an embedding of LD-H-fields. Assume (L, LD_1) is $|K|^+$ saturated. Then i extends to an embedding $(K, LD) \to (L, LD_1)$ of LD-H-fields.
Given LD-H-fields \((K, LD)\) and \((L, LD^*)\) such that \(K \subseteq L\), we say that \((L, LD^*)\) is an extension of \((K, LD)\) (notation \((K, LD) \subseteq (L, LD^*))\) is \(LD^* \cap K = LD\).
Given LD-H-fields \((K, \text{LD})\) and \((L, \text{LD}^*)\) such that \(K \subseteq L\), we say that \((L, \text{LD}^*)\) is an extension of \((K, \text{LD})\) (notation \((K, \text{LD}) \subseteq (L, \text{LD}^*)\)) is \(\text{LD}^* \cap K = \text{LD}\).

Proposition

Suppose \(L\) is an algebraic extension of \(K\), \((K, \text{LD})\) has \(\text{E1}\), and \((\Gamma, \psi) \models \text{Th}(\Gamma_{\text{log}}, \psi)\). Then there is a **unique** LD-set \(\text{LD}^* \subseteq L\) such that \((K, \text{LD}) \subseteq (L, \text{LD}^*)\); equipped with this LD-set, \((L, \text{LD}^*)\) **also has E1**.

Important case: \(L\) is a real closure of \(K\).
Suppose $K \subseteq L$ is an extension of H-fields such that $L = K(C_L)$, so L is a constant field extension of K.

Proposition

Suppose K is henselian, $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$, and (K, LD) has E1. Then there is a **unique** LD-set $LD^* \subseteq L$ such that $(K, LD) \subseteq (L, LD^*)$; equipped with this LD-set, (L, LD^*) **also has E1**.

Thus adding new constants will never be an issue!
The Ψ-closure of an LD-H-field

Definition

We say an LD-H-field extension (K^Ψ, LD^Ψ) of (K, LD) is a **Ψ-closure of (K, LD)** if K^Ψ is real closed, (K^Ψ, LD^Ψ) is Ψ-closed, and for any LD-H-field extension (L, LD^*) of (K, LD) such that L is real closed and (L, LD^*) is Ψ-closed, there is an embedding $(K^\Psi, LD^\Psi) \rightarrow (L, LD^*)$ of LD-H-fields over (K, LD).

Proposition

Suppose (K, LD) has E1, is λ-free, and $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$. Then (K, LD) has a Ψ-closure. Furthermore, every Ψ-closure will be differentially-algebraic over K, and its asymptotic couple will model $\text{Th}(\Gamma_{\log}, \psi)$.
Newtonization: a reduction to the linear case

Suppose K is ω-free, $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$ and let K^{nt} be the *newtonization* of K (a newtonian extension of K with a universal property).

What we would like to prove: Suppose (K, LD) has E1. Then $\text{LD}^{nt} := \text{LD} + I(K^{nt})$ is the unique LD-set on K^{nt} such that $(K, \text{LD}) \subseteq (K^{nt}, \text{LD}^{nt})$; equipped with this LD-set, (K^{nt}, LD^{nt}) also satisfies E1.

This can be reduced to the linear case: Conjecture 1 There is a linearly newtonian H-field L such that $K \subseteq L \subseteq K^{nt}$ and $\text{LD}^{\ast} := \text{LD} + I(L)$ is the unique LD-set on L such that $(K, \text{LD}) \subseteq (L, \text{LD}^{\ast})$; equipped with this LD-set, (L, LD^{\ast}) also satisfies E1.

Linearly newtonian is the fragment of newtonian that only involves degree 1 differential polynomials (differential operators).
Newtonization: a reduction to the linear case

Suppose K is ω-free, $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$ and let K^{nt} be the newtonization of K (a newtonian extension of K with a universal property).

What we would like to prove:

Suppose (K, LD) has E1. Then $LD^{nt} := LD + I(K^{nt})$ is the unique LD-set on K^{nt} such that $(K, LD) \subseteq (K^{nt}, LD^{nt})$; equipped with this LD-set, (K^{nt}, LD^{nt}) also satisfies E1.

This can be reduced to the linear case:
Newtonization: a reduction to the linear case

Suppose K is ω-free, $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$ and let K^{nt} be the newtonization of K (a newtonian extension of K with a universal property).

What we would like to prove:

Suppose (K, LD) has E1. Then $LD^{nt} := LD + I(K^{nt})$ is the unique LD-set on K^{nt} such that $(K, LD) \subseteq (K^{nt}, LD^{nt})$; equipped with this LD-set, (K^{nt}, LD^{nt}) also satisfies E1.

This can be reduced to the linear case:

Conjecture 1

There is a linearly newtonian H-field L such that $K \subseteq L \subseteq K^{nt}$ and $LD^* := LD + I(L)$ is the unique LD-set on L such that $(K, LD) \subseteq (L, LD^*)$; equipped with this LD-set, (L, LD^*) also satisfies E1.

Linearly newtonian is the fragment of newtonian that only involves degree 1 differential polynomials (differential operators).
Newtonization: a reduction to the linear case

Suppose K is ω-free, $(\Gamma, \psi) \models \text{Th}(\Gamma_{\log}, \psi)$ and let K^{nt} be the newtonization of K (a newtonian extension of K with a universal property).

What we would like to prove:

Suppose (K, LD) has E1. Then $LD^{nt} := LD + I(K^{nt})$ is the unique LD-set on K^{nt} such that $(K, LD) \subseteq (K^{nt}, LD^{nt})$; equipped with this LD-set, (K^{nt}, LD^{nt}) also satisfies E1.

This can be reduced to the linear case:

Conjecture 1

There is a linearly newtonian H-field L such that $K \subseteq L \subseteq K^{nt}$ and $LD^* := LD + I(L)$ is the unique LD-set on L such that $(K, LD) \subseteq (L, LD^*)$; equipped with this LD-set, (L, LD^*) also satisfies E1.

Linearly newtonian is the fragment of newtonian that only involves degree 1 differential polynomials (differential operators).
Two more cases we need to handle

Conjecture 2 (Differentially-transcendental immediate extension case)

Suppose \((L, \text{LD}^*)\) is an LD-\(H\)-field extension of \((K, \text{LD})\) such that \((K, \text{LD}), (L, \text{LD}^*) \models T_{\log}\), and suppose there is \(y \in L \setminus K\) such that \(K\langle y \rangle\) is an immediate extension of \(K\) (so \(y\) is necessarily differentially transcendental over \(K\) since \(K\) is asymptotically d-algebraically maximal). Then \(\text{LD}_y := \text{LD} + I(K\langle y \rangle)\) is the unique LD-set on \(K\langle y \rangle\) such that \((K, \text{LD}) \subseteq (K\langle y \rangle, \text{LD}_y)\); equipped with this LD-set, \((K\langle y \rangle, \text{LD}_y)\) also satisfies E1.

Conjecture 3 (Copy of \(\mathbb{Z}\) case)

Similar statement, but for adjoining “copies of \(\mathbb{Z}\)” to the \(\Psi\)-set of \(K\).

Model completeness follows from resolving Conjectures 1, 2, and 3.