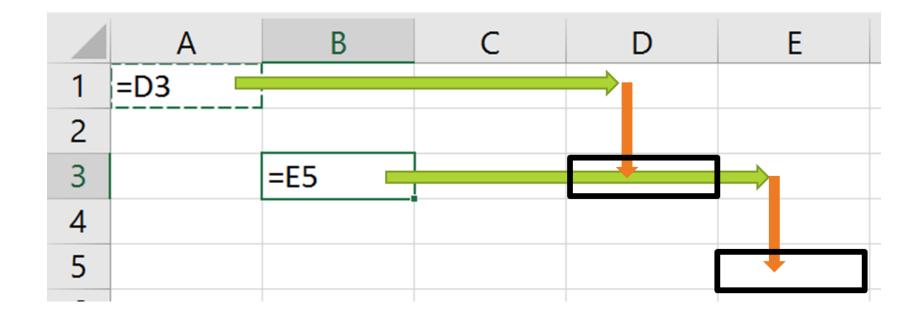
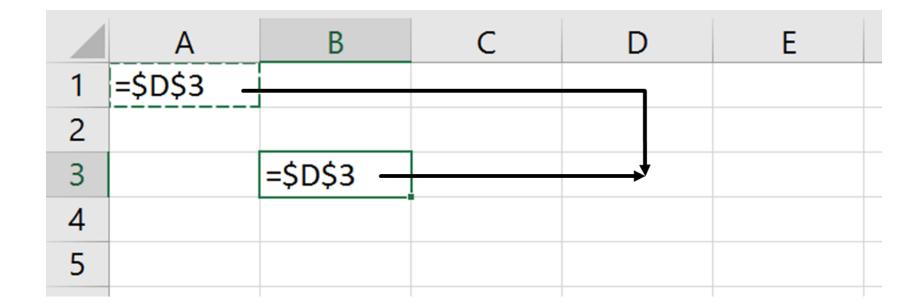
EXCEL WORKSHOP I: INTRODUCTION TO EXCEL

With Applications from Ratemaking

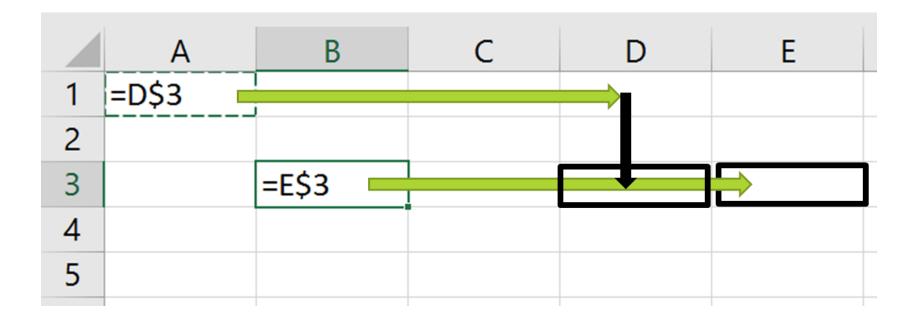

IF(logical_test, [value_if_true], [value_if_false])

Α	В	С
	Formula	Output
100	=IF(A2>73,"Pass", "Fail")	Pass
80	=IF(A3>73,"Pass", "Fail")	Pass
60	=IF(A4>73,"Pass", "Fail")	Fail
40	=IF(A5>73,"Pass", "Fail")	Fail
20	=IF(A6>73,"Pass", "Fail")	Fail
	100 80 60 40	

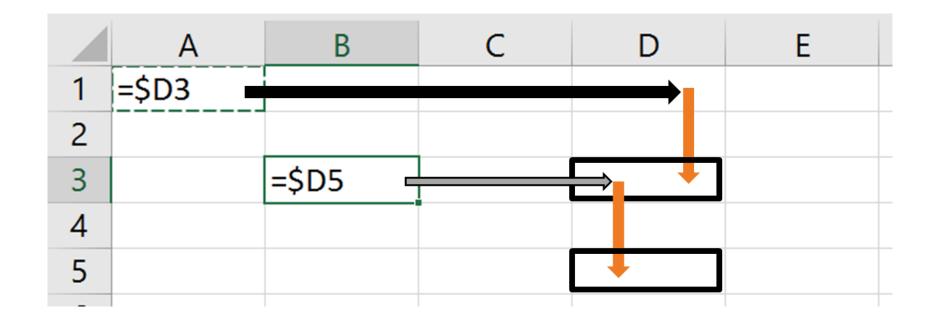
- If [value_if_true] or [value_if_false] are not given, they default to TRUE and FALSE
- If logical_test is true, output is [value_if_true]
- If logical_test is false, output is [value_if_false]
- IF statements can be nested



Relative Cell References: Suppose we copy the formula in cell A1 and paste it in cell B3.



Absolute Cell References: Suppose we copy the formula in cell A1 and paste it in cell B3.


Mixed Cell References: Suppose we copy the formula in cell A1 and paste it in cell B3.

Here, the black arrow does not indicate a relative shift, but an **absolute** shift to row 3.

Mixed Cell References: Suppose we copy the formula in cell A1 and paste it in cell B3.

Here, the black/gray arrows do not indicate relative shifts, but **absolute** shifts to column D.

SUM(number1, [number2], ...) PRODUCT(number1, [number2], ...)

	Α	В	С	D
1	1		Formula	Output
2	2		=SUM(A1,A2,A3,A4,A5)	15
3	3		=SUM(A1:A5)	15
4	4		=PRODUCT(A1:A3, A5)	30
5	5			
6				

 Each of the **number**s can be either a reference to a single cell or to a range

VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])

- Looks for lookup_value in the first column of table_array
- Returns the value in the column number indicated by col_index_num
- [range_lookup]: Default is TRUE (approximate match). FALSE means you want an exact match.
 - For approximate match, data must be sorted in ascending order.

VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])

	Α	В	C	D	E
1	Name	Student ID		Formula	Output
2	Joe Bruin	272577814		=VLOOKUP("Joe Bruin",\$A\$2:\$B\$4,2,FALSE)	272577814
3	John Doe	644907243		=VLOOKUP("Jane Doe",\$A\$2:\$B\$4,2,FALSE)	534763964
4	Jane Doe	534763964		=VLOOKUP("Johnny",\$A\$2:\$B\$4,2,FALSE)	#N/A
_					

VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])

	Α	В	С	D	E	F
1	Percent	Grade			Formula	Output
2	0	F		52	=VLOOKUP(D2,\$A\$2:\$B\$6,2,TRUE)	F
3	60	D		85	=VLOOKUP(D3,\$A\$2:\$B\$6,2,TRUE)	В
4	70	С		92	=VLOOKUP(D4,\$A\$2:\$B\$6,2,TRUE)	Α
5	80	В		63	=VLOOKUP(D5,\$A\$2:\$B\$6,2,TRUE)	D
6	90	Α		75	=VLOOKUP(D6,\$A\$2:\$B\$6,2,TRUE)	С
_						

COUNTIF(range, criteria) SUMIF(range, criteria, [sum_range])

- COUNTIF counts all cells in range that satisfy criteria.
 - The **criteria** can be given as a value, in which case the values in **range** must be equal to that value.
 - It can also be given as a boolean expression in quotes.
- SUMIF is similar, but it sums the values in **range** instead of counting them.
 - Or, it sums across a different [sum_range], using the values in corresponding range-criteria pairs.

COUNTIF(range, criteria) SUMIF(range, criteria, [sum_range])

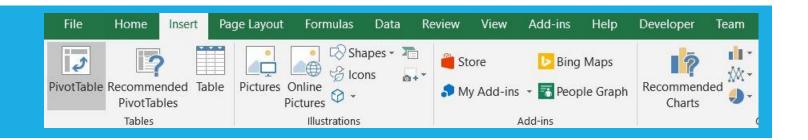
	Α	В	С	D
1	1		Formula	Output
2	2		=COUNTIF(\$A\$1:\$A\$7,3)	0
3	4		=COUNTIF(\$A\$1:\$A\$7,2)	1
4	8		=COUNTIF(\$A\$1:\$A\$7,">4")	4
5	16		=COUNTIF(\$A\$1:\$A\$7,"<>4")	6
6	32			
7	64			
_				

COUNTIF(range, criteria) SUMIF(range, criteria, [sum_range])

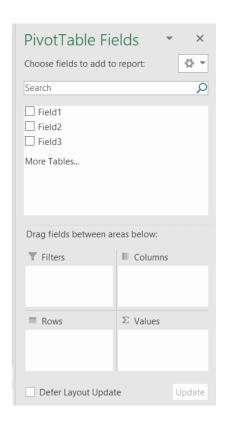
	Α	В	С	D	Е
1	Α	1		Formula	Output
2	В	2		=SUMIF(\$B\$1:\$B\$7,"<10")	15
3	С	4		=SUMIF(\$A\$1:\$A\$7,"A",\$B\$1:\$B\$7)	73
4	Α	8		=SUMIF(\$A\$1:\$A\$7,"<>B",\$B\$1:\$B\$7)	109
5	В	16			
6	С	32			
7	Α	64			
_					

COUNTIFS(criteria_range1, criteria1,...) SUMIFS(sum_range, criteria_range1, criteria1,...)

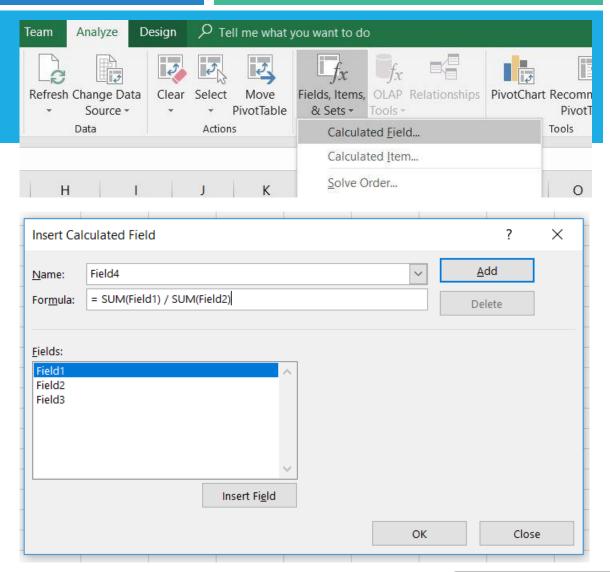
- These do the same thing as COUNTIF and SUMIF, but you can specify multiple criteria.
- Note that for SUMIFS, sum_range comes first.

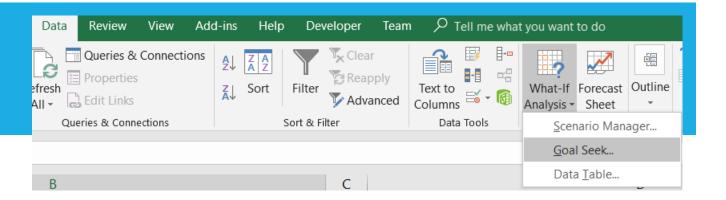


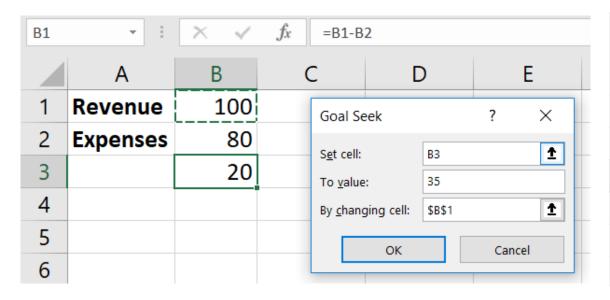
COUNTIFS(criteria_range1, criteria1,...) SUMIFS(sum_range, criteria_range1, criteria1,...)

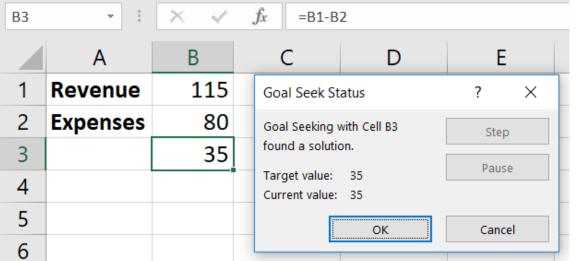

	Α	В	С	D	E	F
1	Gender	Age	Number of Claims		Formula	Output
2	M	24	0		=SUMIFS(C2:C14,A2:A14,"F",B2:B14,">30")	1
3	M	37	1			
4	M	38	0			
5	M	31	2			
6	M	28	2			
7	F	36	0			
8	F	25	1			
9	M	60	0			
10	F	27	1			
11	F	61	0			
12	F	35	1			
13	M	32	1			
14	M	54	2			

PivotTables


- PivotTables can be used to quickly summarize data
- Click and drag different fields to "columns", "rows", or "values", depending on what you want
- You can also filter data


Calculated Fields


- Calculated fields are useful for aggregate-level calculations
- For example, we could look at the value of Field4 for each Field3



GoalSeek

APPENDIX

Background on the problem and mathematical justification

Background

- You are a pricing actuary for Bruin Auto Liability Insurance, LLC, a Los Angeles based company insuring personal automobile casualty losses in Southern California.
- Due to limited data collected, BAL Insurance only uses two variables in their pricing algorithm: driving frequency and county. Assume these two variables are independent.
- You have been tasked with analyzing the premiums charged and claims filed to determine if the rates are adequate.

Background

- It is January 1st, 2019. Through your discussions, you discover that sufficiently many claims for a given calendar year will be reported in 3 years.
- Therefore, you have enough reliable data to analyze 2014 and 2015. However, volume of claims and policy in 2014 are fairly low.
- Thus, you are to conduct an analysis of premiums and claims for policy year 2015.
- For your convenience, the relevant policy data and claims data have been extracted from the full data tables.

Background

- Management's target loss ratio is 85%.
- Conduct an analysis of 2015 data and, based on your results, recommend an alternative rating algorithm to use in the future, if claims in 2016-2018 are similar to those in 2015.
- Backtest your new rating algorithm on data from 2014.
- Determine whether the rates you have set are feasible on the data from policy year
 2014, and state the overall loss ratio on that sheet.

- For simplicity, let's only look at the relativities for **county**, though the process for driving frequency is the same.
- Specifically, let's look at Los Angeles. We decompose the premium collected from all LA policyholders into the base rate and the factor:

$$LR_{LA} = \frac{\sum Claims_{LA}}{\sum Premium_{LA}} = \frac{\sum Claims_{LA}}{BaseRate \cdot \sum Factor_{LA}}$$

 Note that we cannot simply replace Factor_{LA} with 1.20, since Factor refers to the product of county and driving frequency relativities.

• Let LR_T be the target loss ratio. Then, multiplying our previous equation by $\frac{LR_T}{LR_{LA}}$,

$$LR_{LA} \cdot \frac{LR_{T}}{LR_{LA}} = \frac{\sum Claims_{LA}}{BaseRate \cdot \sum Factor_{LA}} \cdot \frac{LR_{T}}{LR_{LA}}$$

Or, reordering:

$$LR_{T} = \frac{\sum Claims_{LA}}{BaseRate \cdot \frac{LR_{LA}}{LR_{T}} \cdot \sum Factor_{LA}}$$

• The key difference between this equation is the additional component of $\frac{LR_{LA}}{LR_{T}}$.

$$LR_{LA} = \frac{\sum Claims_{LA}}{BaseRate \cdot \sum Factor_{LA}}$$

$$LR_{T} = \frac{\sum Claims_{LA}}{BaseRate \cdot \frac{LR_{LA}}{LR_{T}} \cdot \sum Factor_{LA}} = \frac{\sum Claims_{LA}}{BaseRate \cdot \sum \left(\frac{LR_{LA}}{LR_{T}} \cdot Factor_{LA}\right)}$$

■ To adjust the loss ratio in LA to be equivalent to the weighted-average loss ratio, we must multiply the current factor by $\frac{LR_{LA}}{LR_{T}}$.

$$\begin{split} LR_{LA} &= \frac{\sum Claims_{LA}}{BaseRate \cdot \sum Factor_{LA}} \\ LR_{T} &= \frac{\sum Claims_{LA}}{BaseRate \cdot \sum \left(\frac{LR_{LA}}{LR_{T}} \cdot Factor_{LA}\right)} \end{split}$$

- We can choose any target loss ratio we want, but we will use the weighted-average loss ratio in this example.
- Regardless of our choice, our final premiums will be the same after base rate modifications.

