HW9 - Problems

Andrea Brose, Math 167/1, F05

Due 2. December 2005

AP(xix) Prove proposition 16 from lecture on 18.11.2005.

Proposition 16 If $X \subseteq \mathbb{R}^n$ is bounded (see definition 43) then X is bounded above.

AP(xx) Prove Lemma 8 from lecture on 23.11.2005.

Lemma 8 Convex combinations are invariant under affine transformations, i.e. given an affine transformation $\tau: \mathbb{R}^n \to \mathbb{R}^n$, then

$$au\left(\sum_{i=1}^k p_i oldsymbol{x}_i
ight) = \sum_{i=1}^k p_i au(oldsymbol{x}_i)\,,$$

where $p_i \in \mathbb{R}_0^+$, i = 1, ..., k such that $\sum_{i=1}^k p_i = 1$.

AP(xxi) Prove lemma 10 from lecture on 23.11.2005.

Lemma 10 Supporting lines are invariant under affine transformations, i.e. given a convex set $X \subseteq \mathbb{R}^2$, $\mathbf{s} \in \partial X$, an affine transformation $\tau : \mathbb{R}^2 \to \mathbb{R}^2$, and a supporting line l to X at \mathbf{s} , then

- (a) τX is convex set,
- (b) $\tau s \in \partial(\tau X)$, and
- (c) τl is supporting line to τX at τs .

AP(xxii) Lemma 11 Under certain conditions affine transformations are invertible.

- (a) Name condition(s) (try to make them as minimal as possible) under which affine transformations are invertible.
- (b) Show that under your stated condition(s), affine transformations are indeed invertible.

AP(xxiii) Prove the following 'technicalities' from the proof of theorem 14 from lecture on 28.11.2005.

Given a Nash Bargaining Problem (X, \mathbf{d}) , where $\mathbf{d} = (d_1, d_2)$ and utilities u and v for players I and II respectively, define

$$u' = \frac{u - d_1}{x - d_1}$$
 and $v' = \frac{v - d_2}{y - d_2}$

then

- (a) $\tau(u,v)=(u',v')$ is affine transformation.
- (b) $\tau \mathbf{d} = (0,0)$
- (c) $\tau r = (1,0)$
- (d) $\tau t = (0, 1)$