HW7 - Additional Problems

Andrea Brose, Math 167/1, F05

Due 18. November 2005

AP(xvi) For i = 1, 2 let $X_i, Y_i \subseteq \mathbb{R}^n$ and let $R_i : X_i \to Y_i$ be two correspondences. Define

$$R_1 \times R_2 : X_1 \times X_2 \implies Y_1 \times Y_2$$

 $(x_1, x_2) \mapsto (R_1(x_1), R_2(x_2))$

- (a) If both R_i , i = 1, 2 are convex correspondences, show that $R_1 \times R_2$ is convex correspondence.
- (b) If both R_i , i = 1, 2 are continuous correspondences, show that $R_1 \times R_2$ is continuous correspondence.
- AP(xvii) (a) Prove (ii) implies (i) of theorem 12 of the notes: Theorem 12 Let Ω be a set and \leq a preference relation on $\Omega \times \Omega$. Let u, $u': \Omega \to \mathbb{R}$ be two utility functions, both consistent with \leq . Then the following two statements are equivalent.
 - (i) $E[u(\cdot)]$ and $E[u'(\cdot)]$ induce the same preference relation on $lott(\Omega)$.
 - (ii) There exist $A, B \in \mathbb{R}$, with A > 0 such that u'(x) = Au(x) + B for all $x \in \Omega$.
 - (b) How does u' = Au + B relate to u if A < 0?
 - (c) How does u' = Au + B relate to u if A = 0?