HW6 - Problems

Andrea Brose, Math 167/1, F05

Due 14. November 2005

AP(x) Let $P \subset \mathbb{R}^n$ and $Q \subset \mathbb{R}^m$ be convex sets. Show that

$$P \times Q = \{(\boldsymbol{p}, \boldsymbol{q}) : \boldsymbol{p} \in P, \, \boldsymbol{q} \in Q\} \subset \mathbb{R}^{n+m}$$

is a convex set.

AP(xi) Consider

$$f : [0,1] \to \mathbb{R}$$

$$x \mapsto \begin{cases} \frac{1}{x} & \text{if } 0 < x \le 1 \\ 13 & \text{if } x = 0 \end{cases}$$

(a) Define the correspondence

$$R_f : [0,1] \implies \mathbb{R}$$

 $x \mapsto R_f(x) = \{f(x)\},$

where f is as defined above. Let Γ_{R_f} be the graph of the correspondence R_f .

- i. Is Γ_{R_f} convex set?
- ii. Is Γ_{R_f} closed set?

Argue carefully using a picture, i.e. you do not need to provide a rigorous prove, but may if you want.

(b) Define the correspondence

$$R : [0,1] \implies \mathbb{R}$$
$$x \mapsto R(x) = \{y : 0 \le y \le f(x)\},$$

where f is as defined above. Let Γ_R be the graph of the correspondence R.

- i. Is Γ_R convex set? How about R(x) for each $x \in [0, 1]$?
- ii. Is Γ_R closed? How about R(x) for each $x \in [0, 1]$?

Argue carefully using a picture, i.e. you do not need to provide a rigorous prove, but may if you want.

- AP(xii) Show that $\lim_{n\to\infty} \frac{1}{n} \neq 1$.
- AP(xiii) Prove the following proposition from lecture on the 31st of October:

Proposition 9 Let $X \subseteq \mathbb{R}^n$, then every $x \in X$ is a limit point of X.

- AP(xiv) Consider the following correspondences R and check whether they are (upper hemi-)continuous¹ or not:
 - (a) $R_f : \mathbb{R} \rightrightarrows \mathbb{R}$, where $f(x) = x^2$
 - (b) $R_f : \mathbb{R} \rightrightarrows \mathbb{R}$, where $f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x \leq 0 \end{cases}$
 - (c) $R: \mathbb{R} \Rightarrow \mathbb{R}, R(x) = \begin{cases} [-1,1] & \text{if } x \ge 0 \\ \{0\} & \text{if } x < 0 \end{cases}$
 - (d) $R: \mathbb{R} \Rightarrow \mathbb{R}, R(x) = \begin{cases} [-1,1] & \text{if } x > 0 \\ \{0\} & \text{if } x \leq 0 \end{cases}$
- AP(xv) Prove the "only if" part following proposition from lecture on the 4th of November:

Proposition 11 A correspondence $R: X \rightrightarrows Y$ is (upper hemi-)continuous if and only if the graph Γ_R of R is closed subset of $X \times Y$.

i.e. prove Γ_R is closed implies R is continuous.

See definition 45 on page 53 of notes from 31.10.2005.