HW5 - Additional Problems

Andrea Brose, Math 167/1, F05

Due 4. November 2005

AP(viii) Prove the Best Reply Test for player two from the lecture on the 24th of Octobe

Theorem 5 Let $\pi: \Sigma_{\mathrm{I}} \times \Sigma_{\mathrm{II}} \to \mathbb{R}^2$ be a strategic game played with mixed strategies $E: P \times Q \to \mathbb{R}^2$. Let $m = |\Sigma_{\mathrm{I}}|, n = |\Sigma_{\mathrm{II}}|$, let $\mathsf{B} \in \mathrm{Mat}_{m \times n}$ be the payoff matrix to player II and let $p \in P$. Then define

$$\boldsymbol{b} = \boldsymbol{p} \mathsf{B} \text{ and } b_{\max} = \max\{b_i : i = 1, \dots, n\},$$

where $\boldsymbol{b} = (b_1 \ldots b_n)$. Then $\boldsymbol{q} = (q_1 \ldots q_n)$ is best reply to \boldsymbol{p} if and only if $q_i = 0$ for all $i \in \{1, \ldots, n\}$ for which $b_i < b_{\max}$.

AP(ix) Prove the following propostion from the lecture on 24th of October:

Proposition 8 Given an *n*-player, finite stratgeic game $\pi: \Sigma_1 \times \cdots \times \Sigma_n \to \mathbb{R}^n$, $\mathbf{c}^* \in \Sigma_i \times \cdots \times \Sigma_n$ is a NE if and only if \mathbf{c}^* is fixed point of the total best reply correspondence of π .