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Tensors 
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Matrix 

Tensor: higher-order matrix   

three-way tensor:  

p-way tensor:  



Tensors 
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Tensor  ==  Vector ? Fibers? 

(Kolda & Bader, 2009) 

can be viewed as a collection of fibers 



Tensors 
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Tensor  ==  Matrix ? Slices? 

(Kolda & Bader, 2009) 

can be viewed as a collection of slices 



Tensors 
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Why tensors? 

  tensors capture multilinear structure 

Tensor: object in its own right 

  its own geometrical, statistical and computational issues  

 much harder to work with than a matrix 

  more flexible and powerful models 

e.g. parameter estimation in latent variable modelling  
       (to be discussed shortly)  



Dataset: 𝑚-word documents 

Goal: learn parameters    

 𝑘 topics (dists. over 𝑑 words)   

 sample topic  ℎ: 

𝑥1, 𝑥2, … , 𝑥𝑚  sampled i.i.d. from  𝝁𝑖 

Model:  

 each document has 𝒎 words 

Example: Single Topic Model  
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voc. 

prob. 

𝒐 

prob ℎ =  𝑖 = 𝑤𝑖  (𝑖 ∈ [𝑘]) 



Key idea: find parameters 
(approx.) consistent with 
observed moments (Pearson, 
1894)  

Karl Pearson (1857~1936) 

Method of moments: 

Example: Single Topic Model  
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Procedure: 
 setup equations                             

      𝑴𝒐𝒎𝒆𝒏𝒕𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏 𝜽 = 𝑴𝒐𝒎𝒆𝒏𝒕 𝒔𝒂𝒎𝒑𝒍𝒆 

 solve approximately  



Example: Single Topic Model  
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Goal: model the topics of the documents in a given corpus 

𝜽 

Samples of documents 
generated based on single 
topic model with params 
𝜽 = ( 𝝁𝒊 , 𝑤𝑖 ) 

Which moments to use?  
1st  -order? 2nd -order? 3rd -order? pth -order?  

Model parameters  
Unsupervised learning alg. 
Method of moments 
 setup equations 
 solve them approx. 



Binary encoding:  

𝒙𝑡 = 𝒆𝑖           the 𝑡-th word in the document is 𝑖-th 
  word in the vocabulary   

𝑡, 𝑖 ∈ 𝑚 × [𝑑] 
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Example: Single Topic Model  

vocab. 𝒙𝟏 𝒙𝟐 𝒙𝟑 

cats 0 0 1 

dogs 0 0 0 

fear 0 0 0 

I  1 0 0 

like 0 1 0 

raise 0 0 0 

want 0 0 0 

E.g.  

topic: animal 

3-word document 

7-word vocabulary 



First moment 

Not identifiable: only 𝑑 numbers for 𝑑 + 1 𝑘 parameters. 

Binary encoding:  
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Example: Single Topic Model  

𝒙𝑡 = 𝒆𝑖           the 𝑡-th word in the document is 𝑖-th 
  word in the vocabulary   

𝑡, 𝑖 ∈ 𝑚 × [𝑑] 



Second moment 

Matrix-mode: still not identifiable even though  
𝑑 𝑑+1

2
> 𝑑 + 1 𝑘. (Why?) 

Example: Single Topic Model  
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Identifiable?    NO! 

Matrix mode: INSUFFICIENT to identify parameters.! 

Example: Single Topic Model  
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𝑼 ∈ ℝ𝑛×𝑘 is a solution 

𝑴 =  𝑼𝑼𝑇 ∈ ℝ𝑛×𝑛 

𝑴 =  𝑼𝑸(𝑼𝑸)𝑇, for any 𝑸 ∈  𝒪𝑘  (𝑸𝑸
𝑇 = 𝑸𝑇𝑸 = 𝑰𝑘) 

 
𝑼 ∈ ℝ𝑛×𝑘 is a solution for any 𝑸 ∈  𝒪 𝑘   

AMBUIGUITY!  



Third-order moment 

Tensor mode 

Example: Single Topic Model  
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Claim:                      uniquely determine the parameters 𝜽   

Example: Single Topic Model  
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Reduction to orthogonal case via whitening 

Whiten: 

project to 𝑘 dimensions 

transform to orthogonality 

apply 𝑾 to 𝑴 and 𝑻  

𝒗i i∈[𝑘] forms an 

orthonormal basis  
for ℝ𝑘  

Example: Single Topic Model  
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𝑴 = 𝑼𝑫𝑼𝑇 

𝑾 = 𝑼𝑫−𝟏/𝟐 

 Reduced Eigen-
Decomp. 



Spectral theorem and eigen-decompositions 

symmetric matrix  symmetric tensor 

𝒗i i∈[𝑘] forms an orthnormal basis for ℝ𝑘  

eigen-decomp. is unique iff 
            𝜆𝑖  ≠  𝜆𝑗 

if such decomp. exists, 
then it is always unique  
     (even if 𝜆𝑖‘s all same) 

Identifiability issue is resolved via tensor mode! 

Uniqueness of orthogonal decomp.                        uniquely determine                               

       the parameters  𝜽 

Example: Single Topic Model  
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2nd Example: Mixture of Spherical Gaussians 
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Dataset: multiple points 

Goal: learn parameters    

𝑘 means   

Sample cluster ℎ =  𝑖 with probability 𝑤𝑖   (𝑖 ∈ [𝑘]) 

Observe 𝒙, with i.i.d. homogeneous spherical noise 

Model:  



2nd Example: Mixture of Spherical Gaussians 
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Identifiable using 1st, 2nd  and 3rd –order moments together 
                                                                                     [Hsu & Kakade, ‘13] 

Same approach as simple topic model! 



General Principle  
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Similar structures prevail in latent variable models  

Latent Dirichlet Allocatioin (LDA) Mixture of Gaussians (MoG) Hidden Markov Models  (HMMs) Mixed Multinomial Logit Model  



Orthogonal Decomposition 

How to find  (𝜆𝑖 , 𝒗i) i∈[𝑘] ? 

symmetric matrix  symmetric tensor 

successive rank-one 
approximation (SROA) 

generalized SROA? 

20 

( < 𝒗i,  𝒗j> = 𝜹𝑖𝑗  ) 



Successive Rank-One Approximation 

Symmetric matrix 

SROA: rank-one approximation + deflation 

Repeat  𝑘 times 

Recover                       exactly  (            )  

(rank-one approx.) 

(deflation) 
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Successive Rank-One Approximation 

Symmetric orthogonal decomposable (SOD) tensor 

Recover                       exactly  up to sign flips [Zhang & Golub, 01]  

N.B.: no requirement on 𝜆’s to be distinct  
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SROA: rank-one approximation + deflation 

Repeat  𝑘 times 

(rank-one approx.) 

(deflation) 



Successive Rank-One Approximation 

# samples = ∞    

# samples < ∞    

Other potential sources of perturbation 

 Model misspecification 
 Numerical error  
 …… 

Is SROA robust to the perturbation? 

Recall matrix perturbation theory (e.g. Davis-Kahan),         
which requires    𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 < min

𝑖≠𝑗
 |𝜆𝑖 − 𝜆𝑗|. 
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Sampling error  



Successive Rank-One Approximation 

Perturbed SOD tensor 
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SROA: rank-one approximation + deflation 

Repeat  𝑘 times 

(rank-one approx.) 

(deflation) 



Successive Rank-One Approximation 

Output  
 

     perm.     on      s.t. 
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Theorem (MHG, ‘15) 

Repeat  𝑘 times 

(rank-one approx.) 

(deflation) 

Input: the perturbed SOD tensor 

Output:  

N.B.  
 generalizes matrix perturbation analysis 
 NO spectral gap quantity involved 



Best Rank-One Tensor Approximation 
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eliminate     ,  then solve       

& 



SDP Relaxation [Jiang, Ma & Zhang, ‘14]   
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reshape                         to      


 induced symmetry  &  

convex relaxation 

(*) 

The 𝑝 = 3 tensor problem can be transformed into a 𝑝 = 4 tensor problem [JMZ, ‘14].   (*) 



SDP Relaxation  
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Linear constraints 

𝑿 =

𝑎 𝑑 𝑑 𝑏
𝑑 𝑏 𝑏 𝑒
𝑑 𝑏 𝑏 𝑒
𝑏 𝑒 𝑒 𝑐

 

E.g.  𝒗 =  𝑣1, 𝑣2 𝑇 

𝑿 =  𝑣𝑒𝑐(𝒗⊗ 𝒗) 𝑣𝑒𝑐 𝒗⊗ 𝒗 𝑇   =  

𝑣1
2

𝑣1𝑣2
𝑣2𝑣1
𝑣2
2

𝑣1
2 𝑣1𝑣2 𝑣2𝑣1 𝑣2

2  

     =  

𝑣1
4 𝑣1
3𝑣2 𝑣2𝑣1

3 𝑣1
2𝑣2
2

𝑣1
3𝑣2 𝑣1

2𝑣2
2 𝑣1
2𝑣2
2 𝑣1𝑣2

3

𝑣2𝑣1
3 𝑣1
2𝑣2
2 𝑣1
2𝑣2
2 𝑣1𝑣2

3

𝑣1
2𝑣2
2 𝑣1𝑣2

3 𝑣1𝑣2
3 𝑣2
4

  

hyper- symmetry  

spherical constr.     1 = 𝑣 2
2 = 𝑣1
2 + 𝑣2
2 

             = 𝑣1
2 + 𝑣2
2 2 = 𝑡𝑟𝑎𝑐𝑒(𝑿) 



SDP Relaxation  
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N.B.  
 SDP relaxation proposed by [Jiang, Ma & Zhang, ‘14] 
 
  Square reshaping trick for low-rank tensor recovery [MHWG, ‘14] 

 
 
 Equivalent SDP  (of reduced size) proposed by [Nie & Wang, ‘14]   

using moment-based convex relaxation 
 

  Empirically,                               observed almost always!   
     i.e. , SDP relaxation  solves nonconvex  problem! 



Solving SDP 

Semidefinite programming (SDP) 

Linear constraints:  
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Deriving the dual problem 

Lagrangian function  

Dual problem 
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Augmented Lagrangian Method 

Augmented Lagrangian function 

Augmented Lagrangian method (ALM) 

𝒌-th iteration: 

compute 

update   

  minimizing                        jointly over            is hard!  
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Alternating Direction Method of Multipliers (ADMM) 

ADMM 

𝒌-th iteration: 

𝒚-update: 

  

Remedy: alternating direction 

minimize                       along 𝒚-direction and  𝑺-direction 
alternatively   

𝑺-update: 

𝑿-update: 

Each step is (relatively) easy to compute! 
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Update 𝒚 

First-order optimality condition: 

assume                              is onto (surjective) 
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Update 𝑺 

( Eigen-Decomp.) 

with 
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Update muliplier 𝑿 
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Convergence  

Assumption:     

Convergence result 

                       is onto  
 ∃       s.t.                      and               (Slater’s condition) 

                                a primal and dual solution  

From any starting point, 

Semidefinite programming (SDP) 
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Theorem (WGY, ‘10) 



Another ADMM for Tensor Problem 
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Tensor robust principal component anaysis (T-RPCA) 

𝓧 = 𝓛 + 𝓢 ∈  ℝ𝑛1×𝑛2×⋯×𝑛𝐾   

Structural assumptions: 

𝓛: low rank in each mode  (        ) 

𝓢: sparsely supported 

i.e. rank(𝓛(𝒌)) is small for all  𝑘 ∈ [𝐾] 

i.e. cardinality 𝓢:  𝓢 ≠ 0   is small 

Problem: Given 𝓧, recover  𝓛  and  𝓢. 

𝓛(𝒌) 



T-RPCA 
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Convex surrogates 

Convex optimization 

rank(𝓛(𝒊))                𝓛(𝒊) ∗
≔ ∑𝝈𝒋(𝓛(𝒊)) 

         cardinality(𝓢)               𝓢 1 ≔ ∑ |𝓢𝒊𝟏𝒊𝟐⋯𝒊𝑲|  

min
𝓛,𝓢
     𝜆𝑖 𝓛 𝑖 ∗ + 𝓢 1 

    s.t.     𝓛 + 𝓢 = 𝓧 

N.B. 
 generalizes matrix robust PCA [CLMW, 11] 

 theoretical guarantees [MHWG, ‘14] [HMGW, ‘15]  



T-RPCA 
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Variable Splitting 

 λ𝑖 𝓛𝑖, 𝑖 ∗
𝑖

 

 λ𝒊 𝓛(𝒊) ∗
𝑖

 

𝓛 

𝓛1 = 𝓛2 = ⋯ = 𝓛𝐾 



T-RPCA 

min
𝑳𝑖 , 𝑺
     𝜆𝑖  𝓛𝑖, 𝑖 ∗ + 𝓢 1 

               s.t.      𝓛𝑖 + 𝓢 = 𝓧,  ∀ 𝑖 ∈ [𝐾]    

Reformulated problem 

Augmented Lagrangian function 

ADMM 𝒌-th iteration: 

𝓛𝑖 -update: 

  𝓢-update: 

𝚲𝑖-update: 
41 



References 

42 

         [ZG]   Zhang, T. and Golub G. H.. "Rank-one approximation to high order      
     tensors." SIAM Journal on Matrix Analysis and Applications 23.2 (2001):   
     534-550. 
 [AGHKT]  Anandkumar, A., et al. "Tensor decompositions for learning latent  
     variable models." The Journal of Machine Learning Research 15.1 (2014):    
     2773-2832. 
          [HS]  Hsu, D. and Sham M. K.. "Learning mixtures of spherical gaussians:     
     moment methods and spectral decompositions." Proceedings of the 4th    
     conference on Innovations in Theoretical Computer Science. ACM, 2013. 
          [TB]  Kolda, T. G. and Bader B. W. Bader.. "Tensor decompositions and     
     applications." SIAM review 51.3 (2009): 455-500. 
       [JMZ]  Jiang, B., Ma, S. and Zhang S.. "Tensor principal component analysis   
     via convex optimization." Mathematical Programming150.2 (2015): 423-  
     457. 
          [NW]  Nie, J.  and Wang, L.. "Semidefinite relaxations for best rank-1 tensor    
     approximations." SIAM Journal on Matrix Analysis and Applications 35.3       
    (2014): 1155-1179. 
     [CLMW]  Candès, E. J., et al. "Robust principal component analysis?."Journal of  
     the ACM (JACM) 58.3 (2011): 11. 



References 

43 

    [WGY]  Wen, Z., Goldfarb, D., & Yin, W. (2010). Alternating direction      
    augmented   Lagrangian methods for semidefinite             
    programming. Mathematical Programming Computation, 2(3-4), 203-230. 
[MHWG]  Mu, C., et al. "Square deal: Lower bounds and improved relaxations for  
    tensor recovery." Proceedings of the  international conference on Machine    
    learning. ACM, 2014 
        [GQ]  Goldfarb, D., & Qin, Z.. "Robust low-rank tensor recovery: Models    
    and algorithms." SIAM Journal on Matrix Analysis and Applications 35.1   
    (2014): 225-253.  
[HMGW]  Huang, B., et al. "Provable models for robust low-rank tensor    
    completion." Pacific Journal of Optimization 11 (2015): 339-364. 
    [MHG]  Mu, C., Hsu, D., & Goldfarb, D.. "Successive Rank-One      
    Approximations for Nearly Orthogonally Decomposable Symmetric   
    Tensors." SIAM Journal on Matrix Analysis and Applications 36.4 (2015):   
    1638-1659. 


