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Outline

Stochastic Approximation

Stochastic Gradient Descent

Variance Reduction Techniques

Newton-like and quasi-Newton methods for convex stochastic
optimization problems using limited memory block BFGS
updates.

Numerical results on problems from machine learning.

Quasi-Newton methods for nonconvex stochastic optimization
problems using damped and modified limited memory BFGS
updates.
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Stochastic optimization

Stochastic optimization

min f (x) = E[f (x , ξ)], ξ is random variable

Or finite sum (with fi (x) ≡ f (x , ξi ) for i = 1, . . . , n and very
large n)

min f (x) =
1

n

n∑
i=1

fi (x)

f and ∇f are very expensive to evaluate; stochastic gradient
descent (SGD) methods choose a random subset S ⊂ [n] and
evaluate

fS(x) =
1

|S|
∑
i∈S

fi (x) and ∇fS(x) =
1

|S|
∑
i∈S
∇fi (x)

Essentially, only noisy info about f , ∇f and ∇2f is available
Challenge: how to smooth variability of stochastic methods
Challenge: how to design methods that take advantage of
noisy 2nd-order information?
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Stochastic optimization

Deterministic gradient method

Stochastic gradient method
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Stochastic Variance Reduced Gradients

Stochastic methods converge slowly near the optimum due to
the variance of the gradient estimates ∇fS(x); hence requiring
a decreasing step size.
We use the control variates approach of Johnson and Zhang
(2013) for a SGD method SVRG.
It uses d = ∇fS(xt)−∇fS(wk) +∇f (wk), where wk is a
reference point, in place of ∇fS(xt) .
wk , and the full gradient, are computed after each full pass of
the data, hence doubling the work of computing stochastic
gradients.
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Stochastic Average Gradient

At iteration t
- Sample i from {1, . . . ,N}
- update y t+1

i = ∇fi (x t) and y t+1
j = y t

j for all j 6= i

- Compute g t+1 = 1
N

∑N
j=1 y

t+1
i

- Set x t+1 = x t − αt+1g t+1

Provable linear convergence in expectation.

Other SGD variance reduction techniques have been recently
proposes including the methods: SAGA, SDCA, S2GD.
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Quasi-Newton Method for min f (x) : f ∈ C 1

Gradient method:

xk+1 = xk − αk∇f (xk)

Newton’s method:

xk+1 = xk − αk [∇2f (xk)]−1∇f (xk)

Quasi-Newton method:

xk+1 = xk − αkB
−1
k ∇f (xk)

where Bk � 0 approximates the Hessian matrix

Update
Bk+1sk = yk , (Secant equation)

where sk = xk+1 − xk = αkdk , and yk = ∇fk+1 −∇fk
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BFGS

BFGS quasi-Newton method

Bk+1 = Bk +
y>k yk

s>k yk
−

Bksks
>
k Bk

s>k Bksk

where sk := xk+1 − xk and yk := ∇f (xk+1)−∇f (xk)

Bk+1 � 0 if Bk � 0 and s>k yk > 0 (curvature condition)

Secant equation has a solution if s>k yk > 0

When f is strongly convex, s>k yk > 0 holds automatically

If f is nonconvex, use line search to guarantee s>k yk > 0

Hk+1 = (I − sky
>
k

s>k yk
)Hk(I − yk s

>
k

s>k yk
) +

sk s
>
k

s>k yk
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Prior work on Quasi-Newton Methods for Stochastic
Optimization

P1 N.N. Schraudolph, J. Yu and S.Günter. A stochastic quasi-Newton
method for online convex optim. Int’l. Conf. AI & Stat., 2007
Modifies BFGS and L-BFGS updates by reducing the step sk and
the last term in the update of Hk , uses step size αk = β/k for small
β > 0.

P2 A. Bordes, L. Bottou and P. Gallinari. SGD-QN: Careful
quasi-Newton stochastic gradient descent. JMLR vol. 10, 2009
Uses a diagonal matrix approximation to [∇2f (·)]−1 which is
updated (hence, the name SGD-QN) on each iteration,
αk = 1/(k + α).
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Prior work on Quasi-Newton Methods for Stochastic
Optimization

P3 A. Mokhtari and A. Ribeiro. RES: Regularized stochastic
BFGS algorithm. IEEE Trans. Signal Process., no. 10, 2014.
Replaces yk by yk − δsk for some δ > 0 in BFGS update and
also adds δI to the update; uses αk = β/k ; converges in
expectation at sub-linear rate E(f (xk)− f ∗) ≤ C/k

P4 A. Mokhtari and A. Ribeiro. Global convergence of online
limited memory BFGS. to appear in J. Mach. Learn. Res.,
2015.
Uses L-BFGS without regularization and αk = β/k ; converges
in expectation at sub-linear rate E(f (xk)− f ∗) ≤ C/k
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Prior work on Quasi-Newton Methods for Stochastic
Optimization

P5 R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer. A
stochastic quasi-Newton method for large-scale optim.
arXiv1401.7020v2, 2015
Averages iterates over L steps keeping Hk fixed; uses average
iterates to update Hk using subsampled Hessian to compute
yk ; αk = β/k ; converges in expectation at a sub-linear rate
E(f (xk)− f ∗) ≤ C/k

P6 P. Moritz, R. Nishihara, M.I. Jordan. A linearly-convergent
stochastic L-BFGS Algorithm, 2015 arXiv:1508.02087v1
Combines [P5] with SVRG; uses fixed step size α; converges
in expectation at a linear rate.
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Using Stochastic 2nd-order information

Assumption: f (x) = 1
n

∑n
i=1 fi (x) is strongly convex and twice

continuously differentiable.

Choose (compute) a sketching matrix Sk (the columns of Sk
are a set of directions).

We do not use differences in noisy gradients to estimate
curvature, but rather compute the action of the sub-sampled
Hessian on Sk . i.e.,

compute Yk = 1
|T |
∑

i∈T ∇2fi (x)Sk , where T ⊂ [n].
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Example of Hessian-Vector Computation

In binary classification problem, sample function (logistic loss)

f (w ; xi , zi ) = zi log(c(w ; xi )) + (1− zi ) log(1− c(w ; xi ))

where

c(w ; xi ) =
1

1 + exp(−x>i w)
, xi ∈ Rn,w ∈ Rn, zi ∈ {0, 1},

Gradient:

∇f (w ; xi , zi ) = (c(w ; xi )− zi )xi

Action of Hessian on s :

∇2f (w ; xi , zi )s = c(w ; xi )(1− c(w ; xi ))(x>i s)xi
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block BFGS

The block BFGS method computes a ”least change” update to the
current approximation Hk to the inverse Hessian matrix ∇2f (x) at
the current point x , by solving

min ‖H − Hk‖
s.t., H = H>, HYk = Sk .

where ‖A‖ = ‖(∇2f (xk))1/2A(∇2f (xk))1/2‖F (F = Frobenius)
This gives the updating formula (analgous to the updates derived
by Broyden, Fletcher, Goldfarb and Shanno, 1970).

Hk+1 = (I−Sk [S>k Yk ]−1Y>k )Hk(I−Yk [S>k Yk ]−1S>k )+Sk [S>k Yk ]−1S>k

or, by the Sherman-Morrison-Woodbury formula:

Bk+1 = Bk − BkSk [S>k BkSk ]−1S>k Bk + Yk [S>k Yk ]−1Y>k
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Limited Memory Block BFGS

After M block BFGS steps starting from Hk+1−M , one can express
Hk+1 as

Hk+1 = VkHkV
T
k + SkΛkS

T
k

= VkVk−1Hk−1V
T
k−1Vk + VkSk−1Λk−1S

T
k−1V

T
k + SkΛkS

T
k

...

= Vk:k+1−MHk+1−MV T
k:k+1−M +

k+1−M∑
i=k

Vk:i+1SiΛiS
T
i V T

k:i+1,

where
Vk = (I − SkΛkY

T
k ) (1)

and Λk = (ST
k Yk)−1 and Vk:i = Vk · · ·Vi .
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Limited Memory Block BFGS

Hence, when the number of variables d is large, instead of
storing the d × d matrix Hk , we store the previous M block
curvature triples

(Sk+1−M ,Yk+1−M ,Λk+1−M) , . . . , (Sk ,Yk ,Λk) .

Then, analogously to the standard L-BFGS method, for any
vector v ∈ Rd , Hkv can be computed efficiently using a
two-loop block recursion (in O(Mp(d + p) + p3) operations),
if all Si ∈ Rd×p.

Intuition

Limited memory - least change aspect of BFGS is important

Each block update acts like a sketching procedure.
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Two Loop Recursion
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Choices for the Sketching Matrix Sk

We employ one of the following strategies

Gaussian: Sk ∼ N (0, I ) has Gaussian entries sampled i.i.d at
each iteration.

Previous search directions si delayed: Store the previous L
search directions Sk = [sk+1−L, . . . , sk ] then update Hk only
once every L iterations.

Self-conditioning: Sample the columns of the Cholesky factors
Lk of Hk (i.e., LkL

T
k = Hk) uniformly at random. Fortunately

we can maintain and update Lk efficiently with limited
memory.

The matrix S is a sketching matrix, in the sense that we are
sketching the, possibly very large equation ∇2f (x)H = I to which
the solution is the inverse Hessian. Right multiplying by S
compresses/sketches the equation yielding ∇2f (x)HS = S .
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The Basic Algorithm
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Convergence - Assumptions

There exist constants λ,Λ ∈ R+ such that

f is λ–strongly convex

f (w) ≥ f (x) +∇f (x)T (w − x) +
λ

2
‖w − x‖2

2 , (2)

f is Λ–smooth

f (w) ≤ f (x) +∇f (x)T (w − x) +
Λ

2
‖w − x‖2

2 , (3)

These assumptions imply that

λI � ∇2fS(w) � ΛI , for all x ∈ Rd ,S ⊆ [n], (4)

from which we can prove that there exist constants γ, Γ ∈ R+

such that for all k we have

γI � Hk � ΓI . (5)
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Bounds on Spectrum of Hk

Lemma

Assuming ∃ 0 < λ < Λ such that

λI � ∇2fT (x) � ΛI

for all x ∈ Rd and T ∈ [n],

γI � Hk � ΓI

where
1

1+MΛ ≤ γ, Γ ≤ (1 +
√
κ)2M(1 + 1

λ(2
√
κ+κ)

) and κ = Λ/λ

bounds in MNJ depend on problem dimension 1
(d+M)Λ ≤ γ

and Γ ≤ [(d+M)Λ]d+M−1

λd+M ≈ (dκ)d+M
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Linear Convergence

Theorem

Suppose that the Assumptions hold. Let w∗ be the unique
minimizer of f (w). Then in our Algorithm, we have for all k ≥ 0
that

Ef (wk)− f (w∗) ≤ ρkEf (w0)− f (w∗),

where the convergence rate is given by

ρ =
1/2mη + ηΓ2Λ(Λ− λ)

γλ− ηΓ2Λ2
< 1,

assuming we have chosen η < γλ/(2Γ2Λ2) and that we choose m
large enough to satisfy

m ≥ 1

2η (γλ− ηΓ2Λ(2Λ− λ))
,

which is a positive lower bound given our restriction on η.
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Numerical Experiments

Empirical Risk Minimization Test Problems

logistic loss with l2 regularizer

min
w

n∑
i=1

log(1 + exp(−yi 〈ai ,w〉)) + L‖w‖2
2

given data: A = [a1, a2, · · · , an] ∈ Rd×n y ∈ {0, 1}n.

For each method, chose step size
η ∈ {1, .5, .1, .05, . . . , 5× 10−8, 10−8} that gave best results

Computed full gradient after each full data pass.

Vertical axis in figures below: log(relative error)
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covtype-libsvm-binary d = 54, n = 581, 012
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Higgs d = 28, n = 11, 000, 000
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SUSY d = 18, n = 3, 548, 466

0 20 40 60 80 100

time (s)

e
r
r
o
r

gauss_5_M_5

prev_5_M_5

fact_5_M_3
MNJ_bH_9420

SVRG

27 / 35



epsilon-normalized d = 2, 000, n = 400, 000
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rcv1-training d = 47, 236, n = 20, 242
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url-combined d = 3, 231, 961, n = 2, 396, 130
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Contributions

New metric learning framework. A block BFGS framework for
gradually learning the metric of the underlying function using
a sketched form of the subsampled Hessian matrix

New limited memory block BFGS method. May also be of
interest for non-stochastic optimization

Several sketching matrix possibilities.

More reasonable bounds on eigenvalues of Hk

⇒ more reasonable conditions for step size
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Nonconvex stochastic optimization

Most stochastic quasi-Newton optimization methods are for
strongly convex problems; this is needed to ensure a curvature
condition required for the positive definiteness of Bk (Hk)

This is not possible for problems min f (x) ≡ E[F (x , ξ)], where
f is nonconvex

In deterministic setting, one can do line search to guarantee
the curvature condition, and hence the positive definiteness of
Bk (Hk)

Line search is not possible for stochastic optimization

To address these issues we develop a stochastic damped and a
stochastic modified L-BFGS method.
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Stochastic Damped BFGS (Wang, Ma, G, Liu, 2015)

Let yk = 1
m

∑m
i=1(∇f (xk+1, ξk,i )−∇f (xk , ξk,i )) and define

ȳk = θkyk + (1− θk)Bksk ,

where

θk =

{
1, if s>k yk ≥ 0.25s>k Bksk ,

(0.75s>k Bksk)/(s>k Bksk − s>k yk), if s>k yk < 0.25s>k Bksk .

Update Hk : (replace yk by ȳk )

Hk+1 = (I − ρksk ȳ>k )Hk(I − ρk ȳks>k ) + ρksks
>
k

where ρk = 1/s>k ȳk

Implemented in a limited memory version

Work in progress: combine with variance reduced stochastic
gradients (SVRG)
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Convergence of Stochastic Damped BFGS Method

Assumptions

[AS1] f ∈ C 1, bounded below, ∇f is L−Lipschitz continuous

[AS2] For any iteration k, the stochastic gradient satisfies

Eξk [∇f (xk , ξk)] = ∇f (xk)
Eξk [‖∇f (xk , ξk)−∇f (xk)‖2] ≤ σ2

Theorem (Global convergence): Assume AS1-AS2 hold, (and
αk = β/k ≤ γ/(LΓ2) for all k), then there exist positive
constants γ, Γ, such that γI � Hk � ΓI , for all k , and

lim inf
k→∞

‖∇f (xk)‖ = 0, with probability 1.

Under additional assumption Eξk
[
‖∇f (xk , ξk)‖2

]
≤ M

lim
k→∞

‖∇f (xk)‖ = 0, with probability 1.

We do not need to assume convexity of f
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Block-L-BFGS Method for Non-Convex Stochastic
Optimization

Block-update

Hk+1 = (I − SkΛ−1
k Y>k )Hk(I − YkΛ−1

k S>k ) + SkΛ−1
k S>k

where Λk = S>k Yk = S>k ∇2f (xk)Sk
In non-convex case Λk = Λ>k may not be positive definite.

Λk 6� 0 discovered while computing Cholesky factorization
LDL> of Λk .
If during Cholesky, dj ≥ δ or |(LD1/2)ij | ≤ β are not satisfied,
dj is increased by τj .
=⇒ (Λk)jj ← (Λk)jj + τj

has the effect of moving search direction Hk+1∇f (xk+1)
toward one of negative curvature.

Modification based on Gershgorin disc also possible.
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