Stochastic Quasi-Newton Methods

Donald Goldfarb

Department of IEOR Columbia University

UCLA Distinguished Lecture Series May 17-19, 2016

イロト 不得下 イヨト イヨト 二日

Outline

- Stochastic Approximation
- Stochastic Gradient Descent
- Variance Reduction Techniques
- Newton-like and quasi-Newton methods for convex stochastic optimization problems using limited memory block BFGS updates.
- Numerical results on problems from machine learning.
- Quasi-Newton methods for nonconvex stochastic optimization problems using damped and modified limited memory BFGS updates.

Stochastic optimization

Stochastic optimization

min $f(x) = \mathbb{E}[f(x,\xi)], \quad \xi$ is random variable

• Or finite sum (with $f_i(x) \equiv f(x, \xi_i)$ for i = 1, ..., n and very large n)

min
$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$$

 f and ∇f are very expensive to evaluate; stochastic gradient descent (SGD) methods choose a random subset S ⊂ [n] and evaluate

$$f_{\mathcal{S}}(x) = rac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} f_i(x) \quad ext{and} \quad \nabla f_{\mathcal{S}}(x) = rac{1}{|\mathcal{S}|} \sum_{i \in \mathcal{S}} \nabla f_i(x)$$

- Essentially, only noisy info about f, ∇f and $\nabla^2 f$ is available
- Challenge: how to smooth variability of stochastic methods
- Challenge: how to design methods that take advantage of noisy 2nd-order information?

Stochastic optimization

Deterministic gradient method

Stochastic gradient method

Stochastic Variance Reduced Gradients

- Stochastic methods converge slowly near the optimum due to the variance of the gradient estimates ∇f_S(x); hence requiring a decreasing step size.
- We use the control variates approach of Johnson and Zhang (2013) for a SGD method SVRG.
- It uses $d = \nabla f_{\mathcal{S}}(x_t) \nabla f_{\mathcal{S}}(w_k) + \nabla f(w_k)$, where w_k is a reference point, in place of $\nabla f_{\mathcal{S}}(x_t)$.
- *w_k*, and the full gradient, are computed after each full pass of the data, hence doubling the work of computing stochastic gradients.

Stochastic Average Gradient

- Provable linear convergence in expectation.
- Other SGD variance reduction techniques have been recently proposes including the methods: SAGA, SDCA, S2GD.

Quasi-Newton Method for min f(x) : $f \in C^1$

• Gradient method:

$$x_{k+1} = x_k - \alpha_k \nabla f(x_k)$$

Newton's method:

$$x_{k+1} = x_k - \alpha_k [\nabla^2 f(x_k)]^{-1} \nabla f(x_k)$$

• Quasi-Newton method:

$$x_{k+1} = x_k - \alpha_k B_k^{-1} \nabla f(x_k)$$

where $B_k \succ 0$ approximates the Hessian matrix

Update

$$B_{k+1}s_k = y_k,$$
 (Secant equation)

where $s_k = x_{k+1} - x_k = \alpha_k d_k$, and $y_k = \nabla f_{k+1} - \nabla f_k$

BFGS quasi-Newton method

$$B_{k+1} = B_k + \frac{y_k^\top y_k}{s_k^\top y_k} - \frac{B_k s_k s_k^\top B_k}{s_k^\top B_k s_k}$$

where $s_k := x_{k+1} - x_k$ and $y_k := \nabla f(x_{k+1}) - \nabla f(x_k)$

- $B_{k+1} \succ 0$ if $B_k \succ 0$ and $s_k^\top y_k > 0$ (curvature condition)
- Secant equation has a solution if $s_k^\top y_k > 0$
- When f is strongly convex, $s_k^\top y_k > 0$ holds automatically
- If f is nonconvex, use line search to guarantee $s_k^\top y_k > 0$

•
$$H_{k+1} = (I - \frac{s_k y_k^{\top}}{s_k^{\top} y_k}) H_k (I - \frac{y_k s_k^{\top}}{s_k^{\top} y_k}) + \frac{s_k s_k^{\top}}{s_k^{\top} y^k}$$

Prior work on Quasi-Newton Methods for Stochastic Optimization

- P1 N.N. Schraudolph, J. Yu and S.Günter. A stochastic quasi-Newton method for online convex optim. Int'l. Conf. Al & Stat., 2007 Modifies BFGS and L-BFGS updates by reducing the step s_k and the last term in the update of H_k , uses step size $\alpha_k = \beta/k$ for small $\beta > 0$.
- P2 A. Bordes, L. Bottou and P. Gallinari. SGD-QN: Careful quasi-Newton stochastic gradient descent. JMLR vol. 10, 2009 Uses a diagonal matrix approximation to $[\nabla^2 f(\cdot)]^{-1}$ which is updated (hence, the name SGD-QN) on each iteration, $\alpha_k = 1/(k+\alpha)$.

- P3 A. Mokhtari and A. Ribeiro. RES: Regularized stochastic BFGS algorithm. IEEE Trans. Signal Process., no. 10, 2014. Replaces y_k by $y_k - \delta s_k$ for some $\delta > 0$ in BFGS update and also adds δI to the update; uses $\alpha_k = \beta/k$; converges in expectation at sub-linear rate $\mathbb{E}(f(x_k) - f^*) \leq C/k$
- P4 A. Mokhtari and A. Ribeiro. Global convergence of online limited memory BFGS. to appear in J. Mach. Learn. Res., 2015.

Uses L-BFGS without regularization and $\alpha_k = \beta/k$; converges in expectation at sub-linear rate $\mathbb{E}(f(x^k) - f^*) \leq C/k$

P5 R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer. A stochastic quasi-Newton method for large-scale optim. arXiv1401.7020v2, 2015
 Averages iterates over L steps keeping H_k fixed; uses average

iterates to update H_k using subsampled Hessian to compute y_k ; $\alpha_k = \beta/k$; converges in expectation at a sub-linear rate $\mathbb{E}(f(x^k) - f^*) \leq C/k$

P6 P. Moritz, R. Nishihara, M.I. Jordan. A linearly-convergent stochastic L-BFGS Algorithm, 2015 arXiv:1508.02087v1 Combines [P5] with SVRG; uses fixed step size α ; converges in expectation at a linear rate.

Using Stochastic 2nd-order information

- Assumption: $f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x)$ is strongly convex and twice continuously differentiable.
- Choose (compute) a sketching matrix S_k (the columns of S_k are a set of directions).
- We do not use differences in noisy gradients to estimate curvature, but rather compute the action of the sub-sampled Hessian on S_k. i.e.,

・ロト ・ 同ト ・ ヨト ・ ヨト ・ りゅう

• compute $Y_k = \frac{1}{|\mathcal{T}|} \sum_{i \in \mathcal{T}} \nabla^2 f_i(x) S_k$, where $\mathcal{T} \subset [n]$.

Example of Hessian-Vector Computation

In binary classification problem, sample function (logistic loss)

$$f(w; x_i, z_i) = z_i \log(c(w; x_i)) + (1 - z_i) \log(1 - c(w; x_i))$$

where

$$c(w; x_i) = rac{1}{1 + \exp(-x_i^{ op}w)}, \quad x_i \in \mathbb{R}^n, w \in \mathbb{R}^n, z_i \in \{0, 1\},$$

Gradient:

$$\nabla f(w; x_i, z_i) = (c(w; x_i) - z_i)x_i$$

Action of Hessian on s :

$$\nabla^2 f(w; x_i, z_i) s = c(w; x_i)(1 - c(w; x_i))(x_i^\top s) x_i$$

<ロ > < 回 > < 回 > < 目 > < 目 > < 目 > 目 の Q () 13/35

block BFGS

The block BFGS method computes a "least change" update to the current approximation H_k to the inverse Hessian matrix $\nabla^2 f(x)$ at the current point x, by solving

min
$$||H - H_k||$$

s.t., $H = H^\top$, $HY_k = S_k$.

where $||A|| = ||(\nabla^2 f(x_k))^{1/2} A(\nabla^2 f(x_k))^{1/2}||_F$ (F = Frobenius) This gives the updating formula (analgous to the updates derived by Broyden, Fletcher, Goldfarb and Shanno, 1970).

$$H_{k+1} = (I - S_k [S_k^\top Y_k]^{-1} Y_k^\top) H_k (I - Y_k [S_k^\top Y_k]^{-1} S_k^\top) + S_k [S_k^\top Y_k]^{-1} S_k^\top$$

or, by the Sherman-Morrison-Woodbury formula:

$$B_{k+1} = B_k - B_k S_k [S_k^{\top} B_k S_k]^{-1} S_k^{\top} B_k + Y_k [S_k^{\top} Y_k]^{-1} Y_k^{\top}$$

After *M* block BFGS steps starting from H_{k+1-M} , one can express H_{k+1} as

$$H_{k+1} = V_k H_k V_k^T + S_k \Lambda_k S_k^T$$

= $V_k V_{k-1} H_{k-1} V_{k-1}^T V_k + V_k S_{k-1} \Lambda_{k-1} S_{k-1}^T V_k^T + S_k \Lambda_k S_k^T$
:
= $V_{k:k+1-M} H_{k+1-M} V_{k:k+1-M}^T + \sum_{i=k}^{k+1-M} V_{k:i+1} S_i \Lambda_i S_i^T V_{k:i+1}^T$,

where

$$V_k = (I - S_k \Lambda_k Y_k^T) \tag{1}$$

and $\Lambda_k = (S_k^T Y_k)^{-1}$ and $V_{k:i} = V_k \cdots V_i$.

Limited Memory Block BFGS

 Hence, when the number of variables d is large, instead of storing the d × d matrix H_k, we store the previous M block curvature triples

$$(S_{k+1-M}, Y_{k+1-M}, \Lambda_{k+1-M}), \ldots, (S_k, Y_k, \Lambda_k).$$

Then, analogously to the standard L-BFGS method, for any vector v ∈ ℝ^d, H_kv can be computed efficiently using a two-loop block recursion (in O(Mp(d + p) + p³) operations), if all S_i ∈ ℝ^{d×p}.

Intuition

- Limited memory least change aspect of BFGS is important
- Each block update acts like a sketching procedure.

Algorithm 0.1: Two Loop Recursion

 Input:
 $g_t \in \mathbb{R}^d$, S_i , $Y_i \in \mathbb{R}^{d \times q}$ and $\Lambda_i \in \mathbb{R}^{q \times q}$ for $i \in \{t+1-M, \ldots, t\}$

 1
 initiate:
 $v = g_t$

 2
 for $i = t, \ldots, t - M + 1$ do

 3
 $\alpha_i = \Lambda_i S_i^\top v$

 4
 $v = v - Y_i \alpha_i$

 5
 end

 6
 for $i = t - M + 1, \ldots, t$ do

 7
 $\beta_i = \Lambda_i Y_i^\top v$

 8
 $v = v + S_i(\alpha_i - \beta_i)$

 9
 end

 10
 output:

 $H_t g_t = v$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ シ へ (* 17 / 35

We employ one of the following strategies

- Gaussian: S_k ~ N(0, I) has Gaussian entries sampled i.i.d at each iteration.
- Previous search directions s_i delayed: Store the previous L search directions $S_k = [s_{k+1-L}, \ldots, s_k]$ then update H_k only once every L iterations.
- Self-conditioning: Sample the columns of the Cholesky factors L_k of H_k (i.e., L_kL_k^T = H_k) uniformly at random. Fortunately we can maintain and update L_k efficiently with limited memory.

The matrix S is a sketching matrix, in the sense that we are sketching the, possibly very large equation $\nabla^2 f(x)H = I$ to which the solution is the inverse Hessian. Right multiplying by S compresses/sketches the equation yielding $\nabla^2 f(x)HS = S$.

Algorithm 0.1: Stochastic Variable Metric Learning with SVRG **Input:** $H_{-1} \in \mathbb{R}^{d \times d}$, $w_0 \in \mathbb{R}^d$, $\eta \in \mathbb{R}_+$, s = subsample size, q = sample action size and m 1 for $k = 0, \ldots, max_{iter}$ do $\mu = \nabla f(w_k)$ 2 $X_0 = W_k$ 3 for t = 0, ..., m - 1 do 4 Sample $S_t, T_t \subseteq [n]$ i.i.d from a distribution S 5 Compute the sketching matrix $S_t \in \mathbb{R}^{d \times q}$ 6 Compute $\nabla^2 f_S(x_t) S_t$ 7 $H_t = update_metric(H_{t-1}, S_t, \nabla^2 f_T(x_t)S_t)$ 8 $d_t = -H_t \left(\nabla f_{\mathcal{S}}(x_t) - \nabla f_{\mathcal{S}}(w_k) + \mu \right)$ 9 $x_{t+1} = x_t + \eta d_t$ 10 end 11 **Option I:** $w_{k+1} = x_m$ 12 **Option II:** $w_{k+1} = x_i$, *i* selected uniformly at random from [m]; 13 14 end

Convergence - Assumptions

There exist constants $\lambda,\Lambda\in\mathbb{R}_+$ such that

• f is λ -strongly convex

$$f(w) \ge f(x) + \nabla f(x)^T (w - x) + \frac{\lambda}{2} \|w - x\|_2^2,$$
 (2)

f is Λ–smooth

$$f(w) \leq f(x) + \nabla f(x)^T (w - x) + \frac{\Lambda}{2} \|w - x\|_2^2,$$
 (3)

These assumptions imply that

$$\lambda I \preceq \nabla^2 f_{\mathcal{S}}(w) \preceq \Lambda I$$
, for all $x \in \mathbb{R}^d, \mathcal{S} \subseteq [n]$, (4)

• from which we can prove that there exist constants $\gamma, \Gamma \in \mathbb{R}_+$ such that for all k we have

$$\gamma I \preceq H_k \preceq \Gamma I. \tag{5}$$

Bounds on Spectrum of H_k

Lemma

Assuming $\exists 0 < \lambda < \Lambda$ such that

$$\lambda I \preceq \nabla^2 f_T(x) \preceq \Lambda I$$

for all $x \in \mathbb{R}^d$ and $T \in [n]$,

$$\gamma I \preceq H_k \preceq \Gamma I$$

where

$$rac{1}{1+M\Lambda} \leq \gamma$$
, $\Gamma \leq (1+\sqrt{\kappa})^{2M}(1+rac{1}{\lambda(2\sqrt{\kappa}+\kappa)})$ and $\kappa = \Lambda/\lambda$

• bounds in MNJ depend on problem dimension $\frac{1}{(d+M)\Lambda} \leq \gamma$ and $\Gamma \leq \frac{[(d+M)\Lambda]^{d+M-1}}{\lambda^{d+M}} \approx (d\kappa)^{d+M}$

Linear Convergence

Theorem

Suppose that the Assumptions hold. Let w_* be the unique minimizer of f(w). Then in our Algorithm, we have for all $k \ge 0$ that

$$\mathbb{E}f(w_k) - f(w_*) \leq \rho^k \mathbb{E}f(w_0) - f(w_*),$$

where the convergence rate is given by

$$\rho = \frac{1/2m\eta + \eta \Gamma^2 \Lambda (\Lambda - \lambda)}{\gamma \lambda - \eta \Gamma^2 \Lambda^2} < 1,$$

assuming we have chosen $\eta < \gamma \lambda/(2\Gamma^2 \Lambda^2)$ and that we choose m large enough to satisfy

$$m \geq rac{1}{2\eta \left(\gamma \lambda - \eta \Gamma^2 \Lambda (2\Lambda - \lambda)
ight)},$$

which is a positive lower bound given our restriction on η .

Empirical Risk Minimization Test Problems

• logistic loss with *l*₂ regularizer

$$\min_{w} \sum_{i=1}^{n} \log(1 + \exp(-y_i \langle a^i, w \rangle)) + L \|w\|_2^2$$

given data: $A = [a^1, a^2, \cdots, a^n] \in \mathbb{R}^{d \times n}$ $y \in \{0, 1\}^n$.

- For each method, chose step size $\eta \in \{1, .5, .1, .05, \ldots, 5 \times 10^{-8}, 10^{-8}\}$ that gave best results
- Computed full gradient after each full data pass.
- Vertical axis in figures below: log(relative error)

イロン イヨン イヨン イヨン э 24 / 35

covtype-libsvm-binary d = 54, n = 581, 012

■ つへで 25/35

<ロ> <同> <同> < 回> < 回> э

rcv1-training d = 47, 236, n = 20, 242

<ロ> <同> <同> < 回> < 回>

3

url-combined d = 3,231,961, n = 2,396,130

・ロト・(型ト・(ヨト・(型ト・(ロト))

- New metric learning framework. A block BFGS framework for gradually learning the metric of the underlying function using a sketched form of the subsampled Hessian matrix
- New limited memory block BFGS method. May also be of interest for non-stochastic optimization
- Several sketching matrix possibilities.
- More reasonable bounds on eigenvalues of H_k
 - \Rightarrow more reasonable conditions for step size

Nonconvex stochastic optimization

- Most stochastic quasi-Newton optimization methods are for strongly convex problems; this is needed to ensure a curvature condition required for the positive definiteness of B_k (H_k)
- This is not possible for problems min $f(x) \equiv \mathbb{E}[F(x,\xi)]$, where f is nonconvex
- In deterministic setting, one can do line search to guarantee the curvature condition, and hence the positive definiteness of B_k (H_k)
- Line search is not possible for stochastic optimization
- To address these issues we develop a stochastic damped and a stochastic modified L-BFGS method.

Stochastic Damped BFGS (Wang, Ma, G, Liu, 2015)

• Let
$$y_k = \frac{1}{m} \sum_{i=1}^m (\nabla f(x_{k+1}, \xi_{k,i}) - \nabla f(x_k, \xi_{k,i}))$$
 and define
 $\bar{y}_k = \theta_k y_k + (1 - \theta_k) B_k s_k,$

where

$$\theta_k = \begin{cases} 1, & \text{if } s_k^\top y_k \ge 0.25 s_k^\top B_k s_k, \\ (0.75 s_k^\top B_k s_k) / (s_k^\top B_k s_k - s_k^\top y_k), & \text{if } s_k^\top y_k < 0.25 s_k^\top B_k s_k. \end{cases}$$

• Update H_k : (replace y_k by \bar{y}_k)

$$H_{k+1} = (I - \rho_k s_k \bar{y}_k^{\top}) H_k (I - \rho_k \bar{y}_k s_k^{\top}) + \rho_k s_k s_k^{\top}$$

where $\rho_k = 1/s_k^\top \bar{y}_k$

- Implemented in a limited memory version
- Work in progress: combine with variance reduced stochastic gradients (SVRG)

Convergence of Stochastic Damped BFGS Method

Assumptions

[AS1] $f \in C^1$, bounded below, ∇f is *L*-Lipschitz continuous [AS2] For any iteration k, the stochastic gradient satisfies

$$\begin{split} \mathbb{E}_{\xi_k} [\nabla f(x_k, \xi_k)] &= \nabla f(x_k) \\ \mathbb{E}_{\xi_k} [\|\nabla f(x_k, \xi_k) - \nabla f(x_k)\|^2] \leq \sigma^2 \end{split}$$

Theorem (Global convergence): Assume AS1-AS2 hold, (and $\alpha_k = \beta/k \leq \gamma/(L\Gamma^2)$ for all k), then there exist positive constants γ , Γ , such that $\gamma I \leq H_k \leq \Gamma I$, for all k, and

$$\liminf_{k\to\infty} \|\nabla f(x_k)\| = 0, \text{ with probability 1.}$$

• Under additional assumption $\mathbb{E}_{\xi_k}\left[\|\nabla f(x_k,\xi_k)\|^2\right] \leq M$

 $\lim_{k\to\infty} \|\nabla f(x_k)\| = 0, \quad \text{with probability 1.}$

• We do not need to assume convexity of f

Block-L-BFGS Method for Non-Convex Stochastic Optimization

Block-update

$$H_{k+1} = (I - S_k \Lambda_k^{-1} Y_k^{ op}) H_k (I - Y_k \Lambda_k^{-1} S_k^{ op}) + S_k \Lambda_k^{-1} S_k^{ op}$$

where $\Lambda_k = S_k^\top Y_k = S_k^\top \nabla_{-}^2 f(x_k) S_k$

- In non-convex case $\Lambda_k = \Lambda_k^{\top}$ may not be positive definite.
- $\Lambda_k \succeq 0$ discovered while computing Cholesky factorization LDL^{\top} of Λ_k .

If during Cholesky, $d_j \ge \delta$ or $|(LD^{1/2})_{ij}| \le \beta$ are not satisfied, d_j is increased by τ_j .

 $\Longrightarrow (\Lambda_k)_{jj} \leftarrow (\Lambda_k)_{jj} + \tau_j$

- has the effect of moving search direction H_{k+1}∇f(x_{k+1}) toward one of negative curvature.
- Modification based on Gershgorin disc also possible.