
LECTURE NOTES 3 FOR 247A

TERENCE TAO

1. The Hardy-Littlewood maximal inequality

Let us work in Euclidean space Rd with Lebesgue measure; we write |E| instead
of µ(E) for the Lebesgue measure of a set E. For any x ∈ Rd and r > 0 let
B(x, r) := {y ∈ Rd : |x − y| < r} denote the open ball of radius r centred at x.
Thus for instance |B(x, r)| ∼d rd. For any c > 0, we use cB(x, r) = B(x, cr) to
denote the dilate of B(x, r) around its centre by c.

For any r > 0, we define the averaging operators Ar on Rd for any locally integrable
f by

Arf(x) :=

∫
−

B(x,r)

f(y) dy =
1

|B(x, r)|

∫
B(x,r)

f(y) dy.

It is not hard to see that these averagesAr are well-defined, and are even continuous
functions, for locally integrable f .

From Schur’s test or Young’s inequality we know that these Ar are contractions on
every Lp(Rd), 1 ≤ p ≤ ∞:

‖Arf‖Lp(Rd) ≤ ‖f‖Lp(Rd).

Thus the averages Arf are uniformly bounded in size as r varies. The fundamental
Hardy-Littlewood maximal inequality asserts that they are also uniformly bounded
in shape:

Proposition 1.1 (Hardy-Littlewood maximal inequality). We have

‖ sup
r>0

|Arf |‖Lp(Rd) .p,d ‖f‖Lp(Rd)

for all 1 < p ≤ ∞ and any f ∈ Lp(Rd), and also

‖ sup
r>0

|Arf |‖L1,∞(Rd) .d ‖f‖L1(Rd)

for any f ∈ L1(Rd).

The sublinear operator

Mf := sup
r>0

Ar|f |

is known as the Hardy-Littlewood maximal operator. It is easy to see that the
above proposition is equivalent to the assertion that the Hardy-Littlewood maximal
operator is weak-type (1, 1) and strong-type (p, p) for all 1 < p ≤ ∞. Note that it is
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not strong-type (1, 1); indeed, if f is any non-trivial function, then we easily verify
the pointwise bound Mf(x) &f 〈x〉−d, which ensures that Mf is not in L1

x(R
d).

Remark 1.2. Dimensional analysis (analysing how f and Mf react under dilation
of the domain Rd by a scaling parameter λ) shows that no weak or strong type
(p, q) estimates are available in the off-diagonal case p 6= q.

As this proposition is so fundamental we shall give several proofs of it. We begin
with the classical proof, starting with some standard qualitative reductions. Firstly
we may easily reduce to f being non-negative. A monotone convergence argument
also lets us restrict to functions f which are bounded and have compact support.
Also, Arf is continuous in r, so we may restrict r to a countable dense set (such
as the positive rationals); another monotone convergence argument then lets us
restrict r to a finite set. Of course, our bounds need to be uniform in this set, as
well as being uniform in the boundedness and support of f .

It is obvious that M is bounded on L∞(Rd) (indeed, it is a contraction on this
space). So it suffices by Marcinkiewicz interpolation to prove the weak-type (1, 1)
inequality; by homogeneity (and the preceding reductions) it thus suffices to show
that

|{sup
r>0

Arf ≥ 1}| .d ‖f‖L1(Rd)

for any non-negative bounded compactly supported f , where we are implicitly re-
stricting r to a finite set.

Let us denote the set on the left-hand side by E; our hypotheses on f and r easily
ensure that E is a compact set1. By construction, we thus see that for any x ∈ E
there exists a radius r(x) > 0 such that f is locally large compared to the ball
B(x, r(x)):

|B(x, r(x))| <

∫
B(x,r(x))

f(y) dy. (1)

On the other hand, what we want to show is that f is globally large compared to
E:

|E| .d

∫
Rd

f(y) dy. (2)

Since the compact set E is covered by the balls B(x, r(x)), and hence by finitely
many of these balls, things look quite promising. However, there is one remaining
issue, which is that these balls could overlap quite heavily, preventing us from
summing (1) to get (2). Fortunately there is a very simple algorithm which extracts
out from any collection of overlapping balls, a collection of non-overlapping balls
which manages to capture a significant fraction of the original collection in measure:

Lemma 1.3 (Wiener’s Vitali-type covering lemma). Let B1, . . . , BN be a finite
collection of balls. Then there is a subcollection Bn1 , . . . , Bnk

of disjoint balls such

1Alternatively, one can work with the uncountable sup sup
r>0, but instead replace E by an

arbitrary compact subset K of itself, and then take suprema in K at the end (noting that Lebesgue
measure is a Radon σ-finite Radon measure).
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that
k∑

i=1

|Bni
| = |Bn1 ∪ . . . ∪Bnk

| ≥ 3−d|B1 ∪ . . . ∪BN |.

Proof We can order B1, . . . , BN in decreasing order of size. Now we select the
disjoint balls B′

1, . . . , B
′
N by the greedy algorithm, picking the largest balls we can

at each stage. Namely, for i = 1, 2, . . . we choose Bni
to be the first ball which is

disjoint from all previously selected balls Bn1 , . . . , Bni−1 (thus for instance n1 must
equal 1), until we run out of balls. Clearly this gives us a family of disjoint balls.
Now observe from construction that each ball Bm in the original collection is either
a ball Bni

in the subcollection, or else intersects a ball Bni
in the subcollection of

equal or larger radius. In either case we see from the triangle inequality that Bm

is contained in 3Bni
. In other words,

B1 ∪ . . . ∪BN ⊆ 3Bn1 ∪ . . . ∪ 3Bnk

and so

|B1 ∪ . . . ∪BN | ≤ 3d
k∑

i=1

|Bni
| = 3d|Bn1 ∪ . . . ∪Bnk

|

and the claim follows.

From the covering lemma it is easy to conclude (2). Indeed, since E is covered
by finitely many of the balls B(x, r(x)), the covering lemma gives us finitely many
disjoint balls B(xi, r(xi)), i = 1, . . . , k such that

|

k∑
i=1

B(xi, r(xi))| ≥ 3−d|E|

and then on summing (1) we get (2) (with an explicit constant of 3d).

Remarks 1.4. Under mild assumptions one can generalise the covering lemma to
infinite families of balls without difficulty. One can also replace balls by similar
objects, such as cubes; the main property that one needs is that if two such objects
overlap, then the smaller one is contained in some dilate of the larger. This is a
fairly general property, and for instance holds for metric balls on a measure space
with some doubling property µ(B(x, 2r)) = O(µ(B(x, r))), but it fails for very thin
or eccentric sets such as long tubes, rectangles, annuli, etc. Indeed, understanding
the maximal operator for these more geometrically complicated objects is still a
major challenge in harmonic analysis, leading to important open conjectures such
as the Kakeya conjecture.

Let us now give a slightly different proof of the above inequality, replacing balls by
the slightly simpler structure of “dyadic cubes”.

Definition 1.5 (Dyadic cube). A dyadic cube in Rd of generation n is a set of the
form

Q = Qn,k = 2n(k + [0, 1)d) = {2n(k + x) : x ∈ [0, 1)d}

where n is an integer and k ∈ Zd.
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The crucial property of dyadic cubes is the nesting property: if two dyadic cubes
overlap, then one must contain the other. This leads to

Lemma 1.6 (Dyadic Vitali-type covering lemma). Let Q1, . . . , QN be a finite col-
lection of dyadic cubes. Then there is a subcollection Qn1 , . . . , Qnk

of disjoint cubes
such that

Qn1 ∪ . . . ∪Qnk
= Q1 ∪ . . . ∪QN .

Proof Take the Qni
to be the maximal dyadic cubes in Q1, . . . , QN - the cubes

which are not contained in any other cubes in this collection. The nesting property
then ensures that they are disjoint and cover all of Q1, . . . , QN between them.

If we then define the dyadic maximal function

M∆f(x) := sup
Q∋x

∫
−

Q

|f | = sup
Q∋x

1

Q

∫
Q

|f(y)| dy

where Q ranges over the dyadic cubes which contain x, then the same argument as
before then gives the dyadic Hardy-Littlewood maximal inequality

‖M∆f‖L1,∞(Rd) ≤ ‖f‖L1(Rd) (3)

(with no constant loss whatsoever!) which then leads via Marcinkiewicz interpola-
tion to

‖M∆f‖Lp(Rd) .p ‖f‖Lp(Rd)

for 1 < p ≤ ∞.

We can rewrite the dyadic maximal inequality in another way. Let Bn be the
σ-algebra generated by the dyadic cubes of generation n, then

E(f |Bn)(x) =

∫
−

Q

f(y) dy

where Q is the unique dyadic cube of generation n which contains x. The dyadic
Hardy-Littlewood maximal inequality is then equivalent to the assertion that

‖ sup
n

|E(f |Bn)|‖L1,∞(Rd) ≤ ‖f‖L1(Rd)

and thus

‖ sup
n

|E(f |Bn)|‖Lp(Rd) .p ‖f‖Lp(Rd)

for 1 < p ≤ ∞.

Observe that if x ∈ Q, then there is a ball B(x, r) centred at x which contains
Q of comparable volume: |B(x, r)| ∼d Q. Because of this, one easily obtains the
pointwise inequality

M∆f(x) .d Mf(x)

and so the dyadic inequality follows (up to constants) from the non-dyadic one.
The converse pointwise inequality is not true (test it with d = 1 and f = 1[0,1], for
instance). However, a slightly modification of this inequality is true, thanks to the
1/3-translation trick of Michael Christ. We first explain this trick in the context of
the unit interval [0, 1].
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Lemma 1.7. Let I ⊂ [0, 1] be a (non-dyadic) interval. Then there exists an interval
J which is either a dyadic interval, or a dyadic interval translated by 1/3, such that
I ⊂ J and |J | . |I|.

The only significance of 1/3 is that its binary digit expansion oscillates between 0
and 1. Note that the claim is false without the 1/3 shifts; consider for instance the
interval [0.5 − ε, 0.5 + ε] for some very small ε, which straddles a certain “discon-
tinuity” in the standard dyadic mesh. The point is that the dyadic mesh and the
1/3-translate of the dyadic mesh do not share any discontinuities.

We leave the proof of the above simple lemma to the reader. For intervals larger
than [0, 1], a shift by 1/3 is not enough; consider for instance what happens to the
interval (−1, 1). Instead, we have to shift by 4∞/3, which of course does not make
sense as a real number. However, it does make sense in some formal 2-adic sense
(as the doubly infinite binary string . . . 10101.010101 . . .) which is good enough to
define shifted dyadic meshes.

Definition 1.8 (Dyadic meshes). We define D1
0 to be the collection of all dyadic

intervals in R. We define D1
4∞/3 to be the collection of all intervals of the form

I + 4N/3, where I is a dyadic interval at some generation n and N is any integer
greater than or equal to n (note that the exact choice of N is irrelevant). If α =
(α1, . . . , αd) ∈ {0, 4∞/3}d, we let Dd

α = D1
α1

× . . .×D1
αd

be the collection of cubes

formed by the Cartesian product of intervals from D1
α1
, . . . ,D1

αd
.

By modifying the above lemma one then quickly deduces

Lemma 1.9. Let B ⊂ Rd be a ball. Then there exists α ∈ {0, 4∞/3}d and a shifted
dyadic cube Q ∈ Dd

α such that B ⊂ Q and |Q| .d |B|.

This in turn leads to the pointwise inequality bounding the dyadic maximal function
by the ordinary one:

Mf(x) .d sup
α∈{0,4∞/3}d

M∆,αf(x)

where M∆,α is the shifted dyadic maximal function

M∆,αf(x) := sup
Q∈Dd

α:Q∋x

∫
−

Q

|f |.

A routine modification of the proof of the dyadic maximal inequality (or translating
this inequality by 4N/3 and taking limits as N → ∞) shows that each of the M∆,α

are individually of weak-type (1, 1), and bounded on Lp for 1 < p ≤ ∞. Since there
are only Od(1) many choices of α, we can then deduce the usual Hardy-Littlewood
maximal inequality from the dyadic one.

Remark 1.10. What is going on here is that there are two ways to view the real
line R. One is the “Euclidean” way, with the usual group structure and metric.
The other is the “Walsh” or “dyadic” way, in which we identify R with the Cantor
group

R∆ := {(an)n∈Z ∈ (Z/2Z)Z : an = 0 for sufficiently large n}
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via the binary representation,
∑

n an2
−n ≡ (an)n∈Z (identifying Z/2Z with (0, 1),

and ignoring the measure zero sets of terminating decimals where the binary rep-
resentation is not unique). The group structure is now the one inherited from the
Cantor group; in the binary representation, the Cantor-Walsh addition law x+∆y is
the same as ordinary addition x+ y but where we neglect to carry bits. The usual
archimedean metric d(x, y) = |x − y| is replaced by the non-archimedean metric
d∆(x, y), defined by

d∆((an)n∈Z, (bn)n∈Z) := sup{2n : an 6= bn}.

With this metric, the dyadic intervals become the metric balls.

In the above arguments we obtained Lp bounds by first proving weak (1, 1) bounds
and then interpolating. It is natural to ask whether such bounds can be obtained
directly. The answer is yes, but it is surprisingly more difficult to do so. Let us give
two such approaches, a Bellman function approach and a TT ∗ method approach,
which are themselves powerful methods which apply to many other problems as
well.

We begin with the Bellman function approach. This method works primarily for
dyadic model operators, such as M∆, though it can also work for very geometric
operators as well (using geometric averaging operators such as heat kernels in place
of the dyadic averaging operators). For simplicity let us just work in one dimension
(though it is possible to use rearrangement and space-filling curves to deduce the
higher-dimensional case from the one-dimensional case), and consider the task of
establishing

‖M∆f‖Lp(R) .p ‖f‖Lp(R)

for some fixed 1 < p ≤ ∞ (such as p = 2).

The idea is to work by induction on scales - in other words, to induct on the number
of generations. To do this we need a “base case”, so we perform some qualitative
reductions. Fix 1 < p < ∞ (the case p = ∞ being trivial). By a monotone
convergence argument we may restrict attention only to those intervals I of length
larger than 2−N , so long as our estimates are uniform in N . By rescaling (replacing
f(x) by f(2Nx)) we can reduce to the case N = 0. Let us write M≥1 for the
dyadic maximal function restricted to intervals of length at least 1. By a monotone
convergence argument2 we can also assume that f is supported on a dyadic interval
I of some length 2n ≥ 1, and also we may restrict M≥1f to that interval. We can
also take f to be non-negative. Our task is now to show that there exists a constant
Cp such that ∫

−
I

(M≥1f(x))
p dx ≤ Cp

∫
−

I

f(x)p dx (4)

whenever f : I → R+. (We make the constant Cp explicit here because of the
induction that we shall shortly use.) Of course the point is that Cp is independent
of n, I, and f .

2There is a slight problem because we cannot represent R as the monotone limit of dyadic
intervals. However we can do this for R+ and R− separately, and then add up, noting that the
dyadic maximal function is localised to each of these half-lines (e.g. if f is supported on R+ then
so is M≥1f).
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We make a small but useful remark: once f and M≥1f are both restricted to I,
the only dyadic intervals J which are relevant in the definition of M≥1f are those
which are contained in I (including I itself). Intervals which are disjoint from I
play no role, and intervals which contain I give a worse average than that arising
from I itself.

The idea is to prove this by induction on the generation n of I. Our first approach
will not quite work, but a subtle modification of it will.

When n = 0 the claim is trivial (as long as Cp ≥ 1), because for I a dyadic interval
of generation 0 and x ∈ I we have

M≥1f(x) =

∫
−

I

f(y) dy ≤ (

∫
−

I

f(x)p)1/p.

Now let n ≥ 1, and let us see whether we can deduce the n case from the n − 1
case without causing any deterioration in the constant Cp. (Using various applica-
tions of the triangle inequality it is not hard to get from n− 1 to n, replacing Cp

with something worse like 2Cp + 1, but this is not going to iterate into something
independent of n.)

Let us split the dyadic interval I of generation n into two “children” I = Il ∪ Ir
of generation n − 1 (l and r stand for left and right). This also causes a split
f = fl + fr. By induction hypothesis we have∫

−
Il

(M≥1fl(x))
p dx ≤ Cp

∫
−

Il

fl(x)
p dx

∫
−

Ir

(M≥1fr(x))
p dx ≤ Cp

∫
−

Ir

fr(x)
p dx.

and we also trivially have∫
−

I

f(x)p dx =
1

2
(

∫
−

Il

fl(x)
p dx+

∫
−

Il

fl(x)
p) dx.

Now if we were lucky enough to have the pointwise estimates

M≥1f(x) ≤ M≥1fl(x) when x ∈ Il

and similarly for Ir, then we could simply average the two induction hypotheses
and be done. However, this is not quite the case: the correct relationship between
the maximal function of f and of fl, fr is that

M≥1f(x) = max(M≥1fl(x),

∫
−

I

f) when x ∈ Il

and similarly when x ∈ Ir. This causes a problem. If we estimate the max by a sum
and use triangle type inequalities, we will eventually get a bound such as (4) but
with Cp replaced by Op(Cp +1), which is not acceptable for iteration purposes. So
we have to somehow keep the max with the constant

∫
−

I
f with us in the induction ar-

gument. This eventually forces us to change the induction hypothesis (4), replacing
the left-hand side

∫
−IM≥1f(x)

p dx by the more general
∫
−Imax(M≥1f(x), A)

p dx for
some arbitrary A > 0. Given our knowledge that max and addition are comparable
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up to constants, we know that (4) is equivalent to the estimate∫
−

I

max(M≥1f(x), A)
p dx ≤ C′

p(

∫
−

I

f(x)p dx+Ap)

up to changes in the constant Cp. But perhaps this estimate has a better chance
of being proven by induction. The key recursive inequality is now that

max(M≥1f(x), A) = max(M≥1fl(x),max(A,

∫
−

I

f)) when x ∈ Il

and similarly for Il. One can try the induction strategy again, but one sees that
the inability to efficiently control

∫
−

I
f in terms of

∫
I
f(x)p dx and A is a serious

problem. (Hölder’s inequality of course gives
∫
−If bounded by (

∫
−If

p)1/p, but this
turns out to be insufficient.) Because of this, we have no choice but to also throw
in the average B =

∫
−If into the induction hypothesis somehow.

Let us formalise this as follows. Given any parameters D,B,A > 0, let Vn(A,B,D)
denote the cost function

Vn(A,B,D) := sup{

∫
−

I

max(M≥1f(x), A)
p dx :

∫
−

I

fp = D;

∫
−

I

f = B; |I| = 2n}

where f is understood to be nonnegative and supported on a dyadic interval I of
generation n. Note that Hölder’s inequality shows that Vn(A,B,D) = −∞ when
Bp > D, since in this case the supremum is over an empty set. Our task is thus to
show that

Vn(A,B,D) .p D +Ap (5)

uniformly in n and in A,B,D. As we said earlier, the B parameter is not obviously
necessary yet, but will become so when we try to perform the induction, as it
tracks a certain finer property of the function f which needs to be managed in
order to prevent the constants from blowing up. The base case when |I| = 1 is
again trivial; the issue is to pass from fine scales to coarse scales without destroying
the boundedness of implicit constant.

Now the recursive inequality can be turned into an inequality for Vn. Suppose that
f attains the supremum (or comes within an epsilon of it). We have∫

−
Il

fp
l = D − δ;

∫
−

Ir

fp
r = D + δ

for some |δ| ≤ D. Similarly∫
−

Il

fl = B − β;

∫
−

Ir

fr = B + β

for some |β| ≤ B. Then we have

max(M≥1f(x), A) = max(M≥1fl(x),max(A,B))

for x ∈ Il, and similarly for x ∈ Ir ; by construction we thus have∫
−

I

max(M≥1f(x), A)
p ≤

1

2
(Vn−1(max(A,B), B−β,D−δ)+Vn−1(max(A,B), B+β,D+δ)).
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Taking suprema, we obtain the recursive inequality

Vn(A,B,D) ≤ sup
|β|≤B,|δ|≤D

1

2
(Vn−1(max(A,B), B−β,D−δ)+Vn−1(max(A,B), B+β,D+δ)).

(In fact, this is an equality - why?) On the other hand, V0 can be computed directly
as

V0(A,B,D) = max(A,B)p

when Bp ≤ D, and V0(A,B,D) = −∞ otherwise. In principle, this gives us
a complete description of Vn(A,B,D), which should allow one to determine the
truth or falsity of (5). Note that we have reduced the problem from one involving
an unknown function f (which has infinitely many degrees of freedom) to one
involving just three scalar parameters A,B,D, except that we have a different cost
function at every scale. However, suppose that we can devise a Bellman function
Φ(A,B,D) with the property that

V0(A,B,D) . Φ(A,B,D) .p D +Ap (6)

for all A,B,D, and such that Φ obeys the inequality

Φ(A,B,D) ≥
1

2
(Φ(max(A,B), B − β,D − δ) + Φ(max(A,B), B + β,D + δ))

(7)

whenever |β| ≤ B and |δ| ≤ D. Then an induction will show that

Vn(A,B,D) . Φ(A,B,D) .p D +Ap

for all n (and note that the implied constants here are uniform in n), thus proving
(5).

Thus the whole task is reduced to a freshman calculus problem, namely to find a
function of three variables obeying the bounds (6) and (7). The difficulty of course,
is to find the function; verifying the properties is then routine. This “hunt for a
Bellman function” is surprisingly subtle, and requires one to choose a surprisingly
non-trivial choice of Φ.

The condition (7) resembles a concavity condition, and so it is natural to try to
find choices which are concave in some of the variables. An initial candidate is the
function Φ(A,B,D) = D, which certainly obeys (7) and the upper bound of (6)
(and which, in fact, ultimately corresponds to the original estimate (4) before we
threw in the other parametersB,A); unfortunately it does not obey the lower bound
in (6), in the case where A is large compared with B and D1/p. So we need to tweak
this function somewhat. The first step is to improve the concavity by exploiting the
fact that the function only needs to be non-trivial on the region Bp ≤ D. One can
exploit this by using the candidate function Φ(A,B,C) = D− 1

2B
p (say). This still

obeys (7), but now with a bit of a gain when β is large due to the strict concavity
of −Bp. (One cannot play similar games with the D parameter as the upper and
lower bounds in (6) force linear-type behaviour in D.) But we still have not fixed
the problem that Φ is not as large as V0(A,B,D) when A is large. The solution is
to use the Bellman function

Φ(A,B,C) = D +Apf(B/A)
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where f(x) is a concave function which is positive for small x and is equal to − 1
2x

p

for x > 1/10 (say). Thus we have Φ = D− 1
2B

p when A < 10B, but Φ becomes as
large as D+Ap or so when A exceeds 10B. This lets us verify both sides of (6), so
one only needs to verify (7). If A < 5B then the claim follows from the concavity
of D − 1

2B
p (which does not depend on A); when A ≥ 5B the claim follows from

the concavity of Φ in the B variable and in the D variable.

Remark 1.11. Bellman function methods are in principle the sharpest and most
powerful technique to prove estimates. However they are restricted to dyadic set-
tings (or very geometric continuous settings), and are very delicate due to the need
to establish very subtle concavity properties.

Finally, we present the “TT ∗ approach” to the Hardy-Littlewood maximal inequal-
ity. This approach works for both the dyadic and non-dyadic maximal functions,
but is restricted to establishing L2 boundedness (this is a fundamental limitation of
the TT ∗ method, that at least one of the spaces involved has to be a Hilbert space).
The basic idea is rather than prove a boundedness result directly on the maximal
operator M (i.e. an estimate of the form M = O(1)), we prove an estimate on
the square of this operator (roughly speaking, we prove an estimate of the form
M2 = O(M)). This is an example of a powerful strategy to understand an oper-
ator by raising it to a higher power, and hoping to exploit some self-cancellation.
Note that we do not have to cancel the entire power (which would roughly speaking
correspond to proving a bound of the form M2 = O(1)); any nontrivial cancellation
at all is exploitable.

Let us work with the non-dyadic maximal function, thus we wish to show that

‖ sup
r>0

Arf‖L2(Rd) .d ‖f‖L2(Rd)

for all non-negative f . As before we may restrict r to range in a finite set R,
provided our bounds are independent of the choice of R. Note that because each
Ar is already bounded on L2, the maximal operator is now already bounded with
some finite operator norm. Let D denote the optimal such norm, thus D is the
best constant for which

‖ sup
r∈R

Arf‖L2(Rd) ≤ D‖f‖L2(Rd). (8)

We know D is finite; our objective is to obtain the bound D = Od(1). We will do
this by controlling D in a nontrivial way in terms of itself, and in particular by
controlling the “square” of the maximal operator by the maximal operator.

Observe that (8) is equivalent to the uniform linearised estimate

‖Ar(x)f(x)‖L2
x(R

d) ≤ D‖f‖L2(Rd)

for all measurable functions r : Rd → R.

Let us fix the function r. Then we can define the linear operator Tr by

Trf(x) := Ar(x)f(x) =
1

|B(x, r(x))|

∫
Rd

1|x−y|≤r(x)f(y) dy.
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We can thus interpret D as the largest L2 operator norm of the Tr:

D = sup
r

‖Tr‖L2(Rd)→L2(Rd).

To compute this operator norm we make the following observation.

Lemma 1.12 (TT ∗ identity). Let T : H → X be a continuous map from a Hilbert
space to a normed vector space, and let T ∗ : X∗ → H be its adjoint. Then

‖T ‖H→X = ‖T ∗‖X∗→H = ‖TT ∗‖
1/2
X∗→X .

Proof The first identity is just duality. Then we have

‖TT ∗‖X∗→X ≤ ‖T ‖H→X‖T ∗‖X∗→H = ‖T ∗‖2X∗→H

which gives the lower bound in the second identity. For the upper bound, observe
that for any f ∈ X∗ that

‖T ∗f‖2H = 〈f, TT ∗f〉 ≤ ‖f‖X∗‖TT ∗f‖X ≤ ‖f‖2X∗‖TT ∗‖X∗→X ;

taking square roots gives the upper bound as desired.

In light of this identity we know that

D2 = sup
r

‖TrT
∗
r ‖L2(Rd)→L2(Rd).

Now let us take a look at what TrT
∗
r is. Observe that Tr is an integral operator

with kernel

K(x, y) :=
1

|B(x, r(x))|
1|x−y|≤r(x).

Thus the adjoint is given by

T ∗
r g(y) =

∫
Rd

1

|B(x, r(x))|
1|x−y|≤r(x)g(x) dx

and then TT ∗ is given by

TrT
∗
r g(x

′) =

∫
Rd

∫
Rd

1

|B(x, r(x))||B(x′ , r(x′))|
1|x−y|≤r(x)1|x′−y|≤r(x′)g(x) dydx.

Note that the y integral can be computed fairly easily. First we observe that the y
integral vanishes unless |x−x′| ≤ r(x)+r(x′), and in the latter case it enjoys a bound
of Od(min(r(x), r(x′))d). Also, |B(x, r(x))| ∼d r(x)d and |B(x′, r(x′))| ∼d r(x′)d.
Putting this together we see that

|TrT
∗
r g(x

′)| .d

∫
Rd

1|x−x′|≤r(x)+r(x′)
1

max(r(x), r(x′))d
|g(x)| dx.

It is natural to split this integral into the regions r(x) ≤ r(x′) and r(x) ≥ r(x′),
leading to the bound

|TrT
∗
r g(x

′)| .d

∫
Rd

1|x−x′|≤2r(x)
1

r(x)d
|g(x)| dx+

∫
Rd

1|x−x′|≤2r(x′)
1

r(x′)d
|g(x)| dx.

Comparing this with the formulae for Tr and Tr′ , we obtain the interesting pointwise
inequality

|TrT
∗
r g(x

′)| .d T2r|g|(x
′) + T ∗

2r|g|(x
′)
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where 2r is the function x 7→ 2r(x), of course. On the other hand, a scaling
argument gives

‖T2r‖L2(Rd)→L2(Rd) ≤ D

and hence we conclude from the triangle inequality that

‖TrT
∗
r ‖L2(Rd)→L2(Rd) .d D;

taking suprema in r we conclude that D2 .d D, and hence (since D is known to
be finite) D .d 1, and the claim follows.

The Hardy-Littlewood maximal function directly bounds averages on balls and
cubes, but it also controls several other types of averages as well. For instance, we
have the pointwise inequality

1

rd

∫
Rd

1

〈(x − y)/r〉d+ε
|f(y)| dy .d,ε Mf(x) (9)

for any locally integrable f , any x ∈ Rd, and any ε > 0; this can be achieved by
dividing the y integral into dyadic shells 2nr ≤ |x − y| < 2n+1r for n ≥ 0, as well
as the ball |x− y| < r, and we leave the computation to the reader.

The proof of the Hardy-Littlewood maximal inequality extends to the more general
setting of homogeneous spaces. These are measure spaces (X,B, µ) with a metric
d, such that the open balls are measurable with positive finite measure, and that
one has the doubling property

µ(B(x, 2r)) . µ(B(x, r))

for any x, r. Then the Vitali-type covering lemma extends without difficulty to this
setting and yields the maximal inequality

‖ sup
r>0

∫
−

B(x,r)

|f(y)| dµ(y)‖L1,∞(X) . ‖f‖L1(X)

and hence

‖ sup
r>0

∫
−

B(x,r)

|f(y)| dµ(y)‖Lp(X) .p ‖f‖Lp(X)

for any 1 < p ≤ ∞.

In particular we obtain the discrete inequality

‖ sup
N>0

1

N

N∑
n=1

f(m+ n)‖l1,∞m (Z) ≤ ‖f‖l1(Z); (10)

(which we need in our applications to ergodic theory below), while on the torus
R/Z with the usual Lebesgue measure we have

‖ sup
r>0

1

2r

∫
|x−y|≤r

|f(y)| dy‖Lp(R/Z) .p ‖f‖Lp(R/Z) (11)

for 1 < p ≤ ∞ (which we will need for our applications to complex analysis).

Remark 1.13. One could try playing with T ∗T instead of TT ∗ here, but that turns
out to not work very well. The problem is that the linearised maximal operator
is only well-behaved in one variable, and the TT ∗ method manages to play the
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two well-behaved variables against each other; going the other way one achieves no
obvious cancellation.

2. Some consequences of the maximal inequality

The Hardy-Littlewood maximal inequality is the underlying quantitative estimate
which powers many qualitative pointwise convergence results. A basic example is

Theorem 2.1 (Lebesgue differentiation theorem). Let f be locally integrable. Then
we have the pointwise convergence limr→0Arf(x) = f(x) for almost every x. In
fact we have the stronger estimate

lim
r→0

∫
−

B(x,r)

|f(y)− f(x)| dy = 0 (12)

for almost every x.

Before we prove the theorem, let us make some remarks. Firstly, from the identity

Arf(x)− f(x) =

∫
−

B(x,r)

(f(y)− f(x)) dy

and the triangle inequality it is clear that the second estimate implies the first.
Secondly, observe that f is continuous at x if and only if the worst-case local
fluctuation goes to zero

lim
r→0

sup
y∈B(x,r)

|f(y)− f(x)| = 0.

Thus the differentiation theorem is asserting that locally integrable functions are
almost everywhere continuous on the average, in that the average-case local fluctu-
ation goes to zero. This is a manifestation of one of Littlewood’s three principles,
namely that measurable functions are almost continuous. If x is such that (12)
holds, we say that x is a Lebesgue point of f , thus for locally integrable f , almost
every point x is a Lebesgue point.

Proof It suffices to establish the result for x constrained to a large ball B(0, R),
where R > 0 is arbitrary. The claim is obvious if f vanishes on B(0, 2R), so by
linearity we may assume that f is supported on B(0, 2R); in particular f now lies
in L1(Rd). Thus it suffices to establish the claim when f ∈ L1(Rd).

By the preceding discussion we already know that the claim is true for the contin-
uous compactly supported functions Cc(R

d), which is a dense subclass of L1(Rd).
To pass from the dense subclass to the full class we use the Hardy-Littlewood max-
imal inequality now lets us reduce matters to verifying the claim on a dense subset
of L1(Rd). To see this, suppose that we already have proven the claim on a dense
class. Then, given any f ∈ L1(Rd) we can write f as the limit in L1 of a sequence
fn in this dense class; by refining these sequence to make the L1 convergence suf-
ficiently fast (e.g. ‖fn − f‖L1(Rd) ≤ 2−n) and using Markov’s inequality and the
Borel-Cantelli lemma, we can also ensure that fn converges to f pointwise almost
everywhere. Now from the Hardy-Littlewood maximal inequality, we know that
‖ supr>0 Ar|fn− f |‖L1,∞(Rd) converges to zero, thus supr>0 Ar|fn− f | converges to
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zero in measure. By the triangle inequality this implies that supr>0 |Arfn − Arf |
converges in measure also. Thus (again passing to a rapidly converging subsequence
as necessary) we see that supr>0 |Arfn(x) − Arf(x)| converges to zero for almost
every x. This uniform-in-r convergence lets one deduce the convergence of Arf
from the convergence of Arfn.

Finally, by taking a dense class such as the Schwartz class (or even the continuous
functions in L1(Rd)) we easily verify the convergence.

Remark 2.2. Because the proof used a density argument, it offers no quantitative
rate for the speed of convergence. Indeed the convergence can be arbitrarily slow3.
Consider for instance the function f : R → R defined by f(x) = 1 when 0 <
x < 1 and the integer part of Nx is even, and f(x) = 0 otherwise, where N is a
large integer. Then we see that for 0 < x < 1, Ar(x) will stay close to 1/2 for
quite a while (basically for all r ≫ 1/N), and only at scales 1/N or less will it
begin to “decide” to converge to either 0 or 1. Modifying this type of example
(e.g. by a “Weierstrass example” formed by summing together a geometrically
decaying series of such oscillating functions, with N going to infinity), one can
concoct functions whose convergence of Arf to f is arbitrarily slow. (One can
obtain quantitative rates by enforcing regularity conditions on the function, which
essentially compactifies the space of functions that one is working with; we will see
some examples of this later.)

Now let us explore applications to ergodic theory. In particular we wish to investi-
gate limits of the form

lim
N→∞

1

N

N∑
n=1

T nf

for various functions f and various “shift operators” T .

Let us first look at an abstract setting, in which T is a unitary operator on a Hilbert
space.

Theorem 2.3 (Von Neumann ergodic theorem). Let T : H → H be a unitary

operator on a Hilbert space. Then for any f ∈ H, the limit limn→∞
1
N

∑N
n=1 T

nf
exists in the strong H topology.

Proof Let us first argue formally. We have

1

N

N∑
n=1

T nf =
T + . . .+ TN

N
f.

Formally, we have the geometric series formula

T + . . .+ TN

N
f =

TN+1 − T

N(T − 1)
f

3This is ultimately due to the implicit hypothesis that f is measurable, which is itself a quali-
tative assumption that offers no explicit bounds. More quantitative versions of measurability, e.g.
quantifying the extent to which a measurable set can be approximated by elementary sets, can
lead to more explicit bounds.
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which looks like it converges to zero, unless T − 1 fails to be invertible; but on

the other hand when T = 1 T+...+TN

N is just 1, which of course converges to the
identity. So we seem to have covered two extreme cases.

Now let us make the above argument rigorous. If f is T -invariant, thus Tf = f ,

then T nf = f and it is clear that limn→∞
1
N

∑N
n=1 T

nf converges to f . If on
the other hand f is a T -difference, f = Tg − g for some g ∈ H , then we verify the

telescoping identity
∑N

n=1 T
nf = TN+1g−Tg. Since unitary operators preserve the

norm, we thus see from the triangle inequality that limn→∞
1
N

∑N
n=1 T

nf converges

to zero. Also, since the averaging operators 1
N

∑N
n=1 T

n are uniformly bounded in
H (by the triangle inequality), we see that any strong limit of T -differences also

has the property that limn→∞
1
N

∑N
n=1 T

nf exists and equals zero.

To summarise so far, we have two closed subspaces of H for which we know con-
vergence. The first is HT := {f ∈ H : Tf = f}, the invariant space of T ; here

the limit converges to the identity. The other is {Tg − g : g ∈ H}, the closure of
the T -differences; here the limit conveges to zero. These two spaces turn out to
be orthogonal complements. To see this, first observe that they are orthogonal: if
Tf = f , then 〈f, T g〉 = 〈Tf, T g〉 = 〈f, g〉 by unitarity, and hence f is orthogonal
to every T -difference Tg− g and hence by continuity of inner product is orthogonal

to {Tg − g : g ∈ H}. To show orthogonal complement, it then suffices to show that

any vector f orthogonal to {Tg − g : g ∈ H} is invariant. But then f is orthogonal
to Tf − f :

〈f, T f − f〉 = 0.

We rewrite the left-hand side as

〈f, T f〉 − 〈f, f〉 = 〈f, T f〉 − 〈Tf, T f〉 = −〈Tf − f, T f〉

and on conjugating and subtracting we conclude that

〈Tf − f, T f − f〉 = 0

and thus Tf = f as claimed.

Note that the above argument in fact shows the stronger claim that limn→∞
1
N

∑N
n=1 T

nf

converges to the orthogonal projection of f to HT .

Now we move to a more specialised setting, that of a measure-preserving system.

Definition 2.4 (Measure-preserving system). Ameasure-preserving system (X,B, µ, T )
is a probability space (X,B, µ) (thus µ(X) = 1) together with a bi-measurable bi-
jection T : X → X (thus T and T−1 are both measurable) such that T is measure-
preserving, thus µ(T (E)) = µ(E) for all E ∈ B.

Example 2.5 (Circle shift). Let X = R/Z be the standard circle with the usual
Borel σ-algebra and Lebesgue measure, and let Tx := x+α for some α ∈ R, which
may be either rational or irrational.

Remark 2.6. Many of the results here hold under more relaxed assumptions on T ,
but we will not attempt to optimise the hypotheses here.
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The shift T on the base space X , x 7→ T (x), induces a shift on sets E ∈ B,
E 7→ T (E), and then also induces a map on measurable functions f : X → C by
Tf := f ◦ T−1. The use of T−1 is natural since it ensures that T 1E = 1TE and
Tf(Tx) = f(x).

Proposition 2.7 (Mean ergodic theorem). Let (X,B, µ, T ) be a measure-preserving

system, and let f ∈ Lp(X) for some 1 ≤ p < ∞. Then the sequence 1
N

∑N
n=1 T

nf
converges strongly in Lp(X).

Proof The operator T is an isometry on Lp, and so by the triangle inequality the

averaging operators 1
N

∑N
n=1 T

n are uniformly bounded in Lp. Thus it suffices to
prove the claim for a dense subclass of Lp; we shall pick L∞(X). In this class,
which is embedded into the Hilbert space L2(X), we already know from the von
Neumann ergodic theorem (and the fact that T is a unitary operator on L2(X)) that
the averages are convergent in L2(X) norm. But they are also uniformly bounded
in L∞(X). So the claim follows from the log-convexity of Lp norms (for p ≥ 2) or
by Hölder’s inequality and the finite measure of X (for p < 2).

Problem 2.8. Show by example that the mean ergodic theorem fails for p < 1 and
for p = ∞.

Now we study the pointwise convergence problem. The key quantitative estimate
needed is the following analogue of the Hardy-Littlewood maximal inequality.

Theorem 2.9 (Hardy-Littlewood maximal inequality for measure-preserving sys-
tems). Let (X,B, µ, T ) be a measure-preserving system. Then we have

‖ sup
N>0

1

N

N∑
n=1

T nf‖L1,∞(X) . ‖f‖L1(X)

and

‖ sup
N>0

1

N

N∑
n=1

T nf‖Lp(X) .p ‖f‖Lp(X)

for all 1 < p ≤ ∞.

Proof The claim is trivial when p = ∞, so once again the task is to prove the
pointwise estimate. By monotone convergence it suffices to show that

‖ sup
1≤N<N0

1

N

N∑
n=1

T nf‖L1,∞(X) . ‖f‖L1(X)

uniformly in N0 > 1.

The idea is to lift up to a space where T can be modeled by the integer shift
n 7→ n + 1, at which point we can apply (10). Fix N0, and let [2N0] be the finite
set [2N0] := {0, . . . , 2N0 − 1}, endowed with the discrete σ-algebra and uniform
measure, so thatX×[2N0] is a probability space. Inside this space we haveX×[N0],
where [N0] := {0, . . . , N0 − 1}. We define the function F : X × [2N0] → C by

F (x, n) := T nf(x).
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From (10) we have

‖ sup
1≤N<N0

1

N

N∑
n=1

F (x, n+m)‖l1,∞m ([N0])
. ‖F (x,m)‖l1m([2N0])

for all x ∈ X ; writing out what the l1,∞ norm means, and integrating in X using
Fubini’s theorem, we conclude

‖ sup
1≤N<N0

1

N

N∑
n=1

F (x, n+m)‖L1,∞
x,m(X×[N0])

. ‖F‖L1(X×[2N0]).

The right-hand side is just ‖f‖L1(X). As for the left-hand side, observe that

sup
1≤N<N0

1

N

N∑
n=1

F (x, n+m) = sup
1≤N<N0

1

N

N∑
n=1

T nf(T−mx)

and so on writing out the L1,∞ norm we see that the left-hand side is comparable
to

‖ sup
1≤N<N0

1

N

N∑
n=1

T nf(x)‖L1,∞(X)

and the claim follows.

Remark 2.10. Note how a maximal inequality for the integers was “transferred” to
a maximal inequality on arbitrary measure preserving systems. There are several
abstract transference principles which generalise this type of phenomenon. In par-
ticular, the above argument is in fact a special case of the Calderón transference
principle.

Now we can present the analogue of the Lebesgue differentiation theorem for measure-
preserving systems.

Proposition 2.11 (Pointwise ergodic theorem). Let (X,B, µ, T ) be a measure-

preserving system, and let f ∈ L1(X). Then the sequence 1
N

∑N
n=1 T

nf converges
pointwise almost everywhere.

Proof By repeating the argument in the Lebesgue differentiation theorem more or
less verbatim (using the above maximal inequality in place of the Hardy-Littlewood
inequality) it suffices to verify the claim for a dense subclass of L1(X), such as
L2(X). Since the L2(X) norm controls the L1 norm, it suffices to do so for a dense
subclass of L2(X).

Now we repeat the proof of the von Neumann ergodic theorem. For the invariant
part L2(X)T of L2(X), the pointwise convergence is obvious. Also, for functions of
the form Tg− g with g ∈ L∞(X), the convergence is also obvious. But these func-

tions are clearly dense in {Tg− g : g ∈ L2(X)} and hence in {Tg − g : g ∈ L2(X)}.
Since this space and L2(X)T are orthogonal complements of L2(X), we thus have
demonstrated convergence of a dense subclass of L2(X) and thus of L1(X), as
desired.
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Remark 2.12. Notice how the strategy of establishing convergence splits into two in-
dependent parts - obtaining convergence on a dense subclass, and then establishing
some harmonic analysis estimate to pass to the general case. This is not the only
way to achieve convergence results. Later on we shall see a variation-norm approach
which relies purely on harmonic analysis estimates to obtain convergence (foregoing
the dense subclass). In the opposite direction, there are more dynamical approaches
(which we do not cover here) which forego the harmonic analysis component of the
argument, relying instead on analysing the dynamics of the measure-preserving
system by other means (such as measure-theoretic or topological means). It is not
fully understood to what extent these different techniques complement each other.

By combining the Lebesgue differentiation theorem with the Radon-Nikodym the-
orem, one easily obtains

Theorem 2.13 (One-dimensional Radamacher differentiation theorem). If f :
R → C is Lipschitz, then it is differentiable almost everywhere, its derivative lies in
L∞(R), and we have the fundamental theorem of calculus f(y)−f(x) =

∫ y

x
f ′(z) dz

for all x, y ∈ R.

Proof We may reduce to the case when f is real. The Riemann-Stietjes measure df
is easily seen to be absolutely continuous with respect to Lebesgue measure, and is
thus of the form df = gdx for some locally integrable g, thus f(y)−f(x) =

∫ y

x
g(z) dz

by the Radon-Nikodym theorem. The Lebesgue differentiation theorem then shows
that f ′ exists and is equal to g at every Lebesgue point of g (see Q7), and the claim
follows. (The boundedness of g = f ′ is clear from the Lipschitz nature of f .)

Remark 2.14. There are other ways to prove this theorem that do not require
Radon-Nikodym differentiation, which we shall encounter later.

This one-dimensional theorem implies a multi-dimensional analogue:

Theorem 2.15 (Radamacher differentiation theorem). If f : Rd → C is Lipschitz,
then f is differentiable almost everywhere, thus for almost every x there exists a
vector ∇f(x) such that

lim
h→0

|f(x+ h)− f(x)−∇f(x) · h|

|h|
= 0.

Proof For simplicity of notation we take d = 2, although the general case is
similar. Theorem 2.13 (and Fubini’s theorem) shows that the partial derivatives
∂f
∂x1

, ∂f
∂x2

exist almost everywhere and are bounded. This gives us a candidate
gradient ∇f defined almost everywhere. The remaining challenge is to show total
differentiability. In other words, for any ε > 0, we need to show that for almost
every x, we have

f(x+ h)− f(x) = ∇f(x) · h+O(ε|h|) (13)

whenever |h| is sufficiently small depending on x. Note that the control of the
partial derivatives only achieve this when h is a multiple of e1 or e2.
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Fix ε > 0. We will need to make things slightly more quantitative. For any n ≥ 1
and i = 1, 2, let Xi,n denote the set

Xi,n := {x ∈ R2 : |f(x+ hiei)− f(x)−
∂f

∂xi
(x)hi| ≤ ε|hi| whenever |hi| ≤

1

n
}.

Then the almost everywhere existence of ∂f
∂xi

implies that the Xi,n are measurable

and increase to R2 as n → ∞ (neglecting sets of measure zero). In particular,
almost every point lies in infinitely many of the Xi,n. Because of this, we know

that almost every point is a horizontal and vertical Lebesgue point of ∂f
∂xi

and of

1Xi,n
for infinitely many n. (We say that (x, y) is a horizontal Lebesgue point of

F if
∫
−

r

−r
|F (x + t, y) − F (x, y)| dt → 0 as r → 0, and similarly define a vertical

Lebesgue point of F .) In particular, for almost every point there is an n such that

one lies in Xi,n, and is a horizontal and vertical Lebesgue point of ∂f
∂xi

and of 1Xi,n

for i = 1, 2. From this it is not hard to show (13) for a large density set of h near
x (say of density 1 − ε2), basically by decomposing f(x + h1e1 + h2e2) − f(x) =
[f(x+ h1e1)− f(x)] + [f(x+ h1e1 + h2e2) − f(x + h1e1)] and using the Lebesgue

point properties to ensure that ∂f
∂x2

(x+h1e1) is usually close to ∂f
∂x2

(x); we omit the
details. The remaining exceptional values of h can then be dealt with by locating
a nearby non-exceptional value of h and using the Lipschitz property.

3. Hp functions

Another classical application of the Hardy-Littlewood maximal function lies in
obtaining a satisfactory theory of (complex) Hp functions on the complex disk
D := {z : |z| < 1} for 1 < p ≤ ∞. (The theory for p ≤ 1 is more subtle and will
not be dealt with here.)

Let f : D → C be a holomorphic function. From residue calculus we have

2f(z)− f(0) =
1

2πi

∫
|ζ|=r

f(ζ)(ζ + z)

ζ(ζ − z)
dζ

and

f(0) =
1

2πi

∫
|ζ|=r

f(ζ)(r2/ζ + z̄)

ζ(r2/ζ − z̄)
dζ

when |z| < r, and so on averaging, and noting that r2/ζ+z̄
r2/ζ−z̄ is the complex conjugate

of ζ+z
ζ−z when |ζ| = r, we obtain

f(z) =

∫
|ζ|=r

f(ζ)Re(
ζ + z

ζ − z
)
dζ

2πiζ

or in other words, if we set fr : R/Z → C to be the function fr(θ) := f(re2πiθ), we
have the reproducing formula

fs = fr ∗Ks/r

whenever 0 ≤ s < r < 1 and Kt is the Poisson kernel

Kt(β) = Re(
e2πiβ + t

e2πiβ − t
) =

1− t2

1 + t2 − 2t cos 2πβ
.
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The kernel Kt is clearly non-negative; applying the above identity to f ≡ 1 (or
computing directly) we see also that Kt has mass 1:

‖Kt‖L1(R/Z) =

∫
R/Z

Kt dθ = 1.

From Young’s inequality we thus obtain that for 1 ≤ p ≤ ∞, the Lp norm of f is
increasing on circles:

‖fs‖Lp(R/Z) ≤ ‖ft‖Lp(R/Z).

(Note that the p = ∞ case is just the maximum principle.) In particular, the
quantity

‖f‖Hp(D) := lim
t→1−

‖ft‖Lp

θ
(R/Z)

always exists. We say that f is an Hp function if f is analytic on D and the norm
‖f‖Hp(D) is finite. It is not hard to see that Hp(D) becomes a normed vector space
(and that Hp(D) ⊃ Hq(D) whenever p < q); a little more work shows that it is in
fact complete.

Problem 3.1. For any n ∈ Z and g ∈ L1(R/Z), define the Fourier coefficient ĝ(n)
of g by the formula

ĝ(n) :=

∫
R/Z

g(θ)e−2πinθ dθ.

Show that

K̂t(n) = t|n|

for every 0 ≤ t < 1 and n ∈ Z, and that

f̂s(n) = (s/r)|n|f̂r(n)

for every f ∈ D, 0 ≤ s < r < 1 and n ∈ Z. Also show that f̂r(n) = 0 for all n 6= 0,
and that

Kt ∗Kt′ = Ktt′

for all 0 ≤ t, t′ ≤ 1. (Note that these identities can be proven either by complex
analysis methods or by Fourier analysis methods; it is instructive to prove them
both ways and compare results.)

The kernel Kt can be easily verified to obey the bounds

|Kt(θ)| .
1/(1− t)

〈dist(0, θ)/(1− t)〉2
.

This is enough to obtain the pointwise estimate

|f ∗Kt| . Mf

where

Mf(θ) := sup
r>0

1

2r

∫
dist(α,θ)<r

|f(α)| dα

is the Hardy-Littlewood maximal function of f . From last week’s notes we conclude
that for any 1 ≤ p ≤ ∞ and f ∈ Lp(R/Z), that f ∗Kt converges to f in Lp(R/Z)
norm, and by modifying the proof of the Lebesgue differentiation theorem we also
see that it converges pointwise almost everywhere.
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The definition of Hp strongly suggests (but does not immediately prove) that if f
lies in Hp, then ft should converge to some sort of limit f1 as t → 1−. This is
indeed the case:

Theorem 3.2. Let f ∈ Hp(D) for 1 < p < ∞. Then ft converges both in Lp(R/Z)
norm and pointwise almost everywhere to a limit f1 ∈ Lp(R/Z).

Remark 3.3. The theorem fails for p ≤ 1, as can be seen by explicitly computing
using the function f(z) := 1+z

1−z . When p = ∞, the pointwise almost everywhere
claim is still true, but the convergence is not.

Proof Let us first demonstrate weak convergence. For any g ∈ Lp′

(R/Z) and
0 < t < 1, we observe that

〈fr, g ∗Kt〉 = 〈fr ∗Kt, g〉 = 〈frt, g〉 = 〈ft ∗Kr, g〉 (14)

where 〈f, g〉 :=
∫
R/Z f(θ)g(θ) dθ is the inner product on R/Z (here we use the fact

that Kt is real and even). Since ft ∗Kr converges in Lp norm to ft as r → 1, we
thus see that 〈fr, g ∗Kt〉 converges to a limit as r → 1. Since g ∗Kt converges in

Lp′

norm to g as t → 1, we conclude (from Hölder’s inequality and the uniform
Lp bound on fr) that 〈fr, g〉 also converges to a limit as r → 1, thus fr converges
weakly. But as Lp is reflexive, the closed unit ball is also weakly closed, and we
conclude that fr converges weakly to f1 for some f1 ∈ Lp(R/Z), thus

lim
r→1

〈fr, g〉 = 〈f1, g〉

for all g ∈ Lp′

. Replacing g by g ∗Kt and using (14) we conclude

lim
r→1

〈ft ∗Kr, g〉 = 〈f1, g ∗Kt〉,

and hence (since ft ∗Kr converges to ft in Lp norm)

〈ft, g〉 = 〈f1, g ∗Kt〉 = 〈f1 ∗Kt, g〉.

This is for all g ∈ Lp′

, thus we have

ft = f1 ∗Kt.

Thus ft converges pointwise almost everywhere and in Lp norm to f1.

4. The Calderón-Zygmund decomposition

For a function f : X → C on an abstract measure space, and any threshold λ > 0
one has the basic decomposition

f = f1|f |≤λ + f1|f |>λ

into a “good” g := f1|f |≤λ piece (bounded by λ), and a “bad” piece b := f1|f |>λ

(larger than λ, but at least of small support). If for instance f ∈ L1(X), then we
have the bounds

‖g‖L1(X) ≤ ‖f‖L1(X); ‖g‖L∞(X) ≤ λ

for the good piece and

‖b‖L1(X) ≤ ‖f‖L1(X); µ(supp(b)) ≤
‖f‖L1(X)

λ
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for the bad piece (the last inequality being Markov’s inequality). Thus both pieces
inherit the L1 bound of the whole, but enjoy an additional useful property. This
type of decomposition underlies tools such as the layer cake decompositions and
the real interpolation method.

For arbitrary measure spaces X with no additional structure, this type of decom-
position is about the best one can do to split f into “good” and “bad” parts.
But if f has more structure - in particular some sort of metric or dyadic structure
compatible with the measure - then one can do better, in particular one can se-
lect the bad piece b to be “locally oscillating” in a certain sense. This principle,
which uses the same ideas that underlie the Hardy-Littlewood maximal inequality,
is formalised in the Calderón-Zygmund decomposition, a fundamental tool in the
Calderón-Zygmund theory of singular integrals.

To motivate the lemma let us first give a simple one-dimensional version.

Lemma 4.1 (Rising sun lemma). Let I ⊂ R be a bounded interval, and let f : I →
R be integrable, and let λ ∈ R be such that

∫
−If ≤ λ. Then there exist an at most

countable family (Iα)α∈A of disjoint open intervals in I such that

• f(x) ≤ λ for almost every x ∈ I\
⋃

α∈A Iα;

•
∫
−Iα

f = λ for every α ∈ A.

Proof By subtracting λ from f we may normalise λ = 0. We may take I to be
half-open I = [x−, x+). Define F : I → R by F (x) := −

∫ x

x−
f(y) dy. Then F is a

continuous function which starts at zero and ends up positive. Define a “maximal”
version F ∗ : I → R of F by F ∗(x) := supx−≤y≤x F (y), then F ∗ is continuous non-

decreasing which starts at zero and ends up positive. Let Ω := {x ∈ I : F ∗(x) >
F (x)}, then Ω is an open subset of I, thus Ω =

⋃
α∈A Iα for some at most countable

set of intervals Iα. At the endpoints of each interval we have F ∗(x) = F (x), while
on the interior of these intervals F ∗ is necessarily constant (why?). This gives the
second desired property. For the first, one observes from Q7 that at almost every
point where f(x) < 0, we have F differentiable with F ′ < 0, which implies that
x ∈ Ω, and the claim follows.

As a corollary we have

Corollary 4.2 (One-dimensional rising sun lemma). Let the hypotheses be as in the
above lemma. Then we have a decomposition f = g +

∑
α∈A bα, where g : I → R

is bounded above by λ with
∫
I
g =

∫
I
f , and for each α ∈ A, bα is supported

in Iα and has mean zero. Furthermore, if λ > 0 and f is non-negative, then∑
α |Iα| ≤

‖f‖
L1(I)

λ and ‖bα‖L1 ≤ 2λ|Iα|.

Proof We set bα := (f − λ)1Iα , and set g equal to f outside of
⋃

α Iα and equal
to λ inside

⋃
α Iα. To prove the last two claims, we have∫

Iα

f = λ|Iα|
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so on summing and using the non-negativity of f∫
I

f ≥ λ
∑
α

|Iα|

from which the former claim follows. Finally, from the definition of bα and the
triangle inequality

‖bα‖L1 ≤

∫
Iα

f +

∫
Iα

λ = 2λ|Iα|

which is the latter claim.

The proof of the rising sun lemma relies crucially on the ordered nature of the
real line. For more general spaces, such as Euclidean spaces, it is preferable to use
arguments that rely instead on metric or dyadic structure. We begin with a dyadic
version.

Proposition 4.3 (Dyadic Calderón-Zygmund decomposition). Let f ∈ L1(Rd)
and λ > 0. Then there exists a decomposition f = g +

∑
Q∈Q bQ, where the “good”

function g obeys the bounds

‖g‖L1(Rd) ≤ ‖f‖L1(Rd); ‖g‖L∞(Rd) ≤ 2dλ,

Q ranges over a disjoint family Q of dyadic cubes, and each bQ is supported on Q,
has mean zero, and has the L1 bound

‖bQ‖L1(Rd) ≤ 2d+1λ|Q|.

Furthermore, we have the inclusions⋃
Q∈Q

Q = {M∆f > λ} ⊂ {Mf & λ}.

In particular from (3) we have
∑

Q∈Q |Q| ≤
‖f‖

L1(Rd)

λ .

Proof The arguments here will closely resemble that used to prove (3). Let us say
that a cube Q is bad if

∫
−

Q
|f | > λ, and good otherwise. Call a bad cube Q maximal

if Q is bad, but no cube strictly containing Q is bad, and let Q be the collection of
all maximal bad cubes, thus Q is a collection of disjoint dyadic cubes, and we also
clearly have M∆f ≥ λ on each bad cube. From the hypothesis f ∈ L1(Rd) and
monotone convergence we see that all cubes with sufficiently large side-length are
automatically good. Thus every bad cube is contained in a maximal bad cube.

Now let Q be a maximal bad cube. The parent Q′ of Q (i.e. the unique dyadic cube
of twice the side-length containing Q) is good, hence

∫
−

Q′ |f | ≤ λ. Since |Q′| = 2d|Q|,

we conclude that
∫
−Q|f | ≤ 2dλ. Now set

bQ := (f −

∫
−

Q

f)1Q

and

g = f(1− 1⋃
Q∈Q

Q) +
∑
Q

(

∫
−

Q

f)1Q.



24 TERENCE TAO

All the desired properties are then easily verified, except perhaps for the claim
‖g‖L∞(Rd) ≤ 2dλ. This claim is clear on each separate cube Q; the only difficulty

is to show that g is bounded by 2dλ outside of
⋃

Q∈Q Q. But by construction we

see that if x 6∈
⋃

Q∈Q Q and Q ∋ x, then Q is good, and |
∫
−

Q
g| = |

∫
−

Q
f | ≤ λ. On

the other hand, the (dyadic version of the) Lebesgue differentiation theorem shows
that

∫
−

Q
f converges to f(x) for almost every x as |Q| → 0. Thus |g(x)| ≤ λ for

almost every such x, and we are done.

Problem 4.4. Let B be the σ-algebra generated by the cubes in Q, and the Borel
subsets of Rd\

⋃
Q∈Q Q. Show that g = E(f |B).

Note that the total bad set
⋃

Q∈Q Q is given by the level set {M∆f > λ} of the
dyadic maximal function. This suggests an alternate approach to the Calderón-
Zygmund decomposition, in which one starts by identifying the total bad set (in
this case, {M∆f > λ}), and then decomposes it into cubes or balls. A prototype
decomposition of this type is

Proposition 4.5 (Dyadic Whitney decomposition). Let Ω ( Rd
+ be an open set.

Then there exists a decomposition Ω =
⋃

Q∈Q Q, where Q ranges over a family Q

of disjoint dyadic cubes, and for each Q in this family Q, the parent Q′ of Q is not
contained in Ω.

Proof Define Q to be the set of all dyadic cubes Q in Ω which are maximal with
respect to set inclusion; the claim follows from the nesting property. (The condition
Ω ( Rd

+ is needed to ensure that every cube is contained in a maximal cube; the
open-ness is to get every point of Ω contained in at least one cube.)

The property that Q′ is not contained in Ω implies the bounds

0 ≤ dist(Q,Rd
+\Ω) ≤ diam(Q).

In many applications we need to complement the upper bound with a non-trivial
lower bound. This can be done with a little more effort:

Proposition 4.6 (Whitney decomposition). Let Ω ( Rd be an open set and let
K ≥ 1. Then there exists a decomposition Ω =

⋃
Q∈Q Q, where Q ranges over

a family Q of disjoint dyadic cubes, and for each Q in this family Q, we have
dist(Q,Rd\Ω) ∼ Kdiam(Q).

Proof Let Q′ denote those dyadic cubes Q in Ω such that

Kdiam(Q) ≤ dist(Q,Rd\Ω) ≤ 5Kdiam(Q).

It is not hard to show that these cubes cover Ω; indeed, given any x in Ω, all one
needs to do is to locate a cubeQ containing x with diameter between dist(x,Rd\Ω)/4K
and dist(x,Rd\Ω)/2K. The cubes are not disjoint; however if one lets Q ⊂ Q′ be
those cubes in Q′ which are maximal with respect to set inclusion, then the claim
follows from the nesting property.



LECTURE NOTES 3 25

Note that if K is large, the cubes in this above decomposition have the property
that nearby cubes Q,Q′ (in the sense that dist(Q,Q′) . diam(Q)+diam(Q′)) have
comparable diameter, thanks to the triangle inequality

|dist(Q,Rd\Ω)− dist(Q′,Rd\Ω)| ≤ dist(Q,Q′) + diam(Q) + diam(Q′).

Since every cube is contained in a ball of comparable radius (with constants de-
pending on d), we then conclude

Proposition 4.7 (Whitney decomposition for balls). Let Ω ( Rd be an open set
and let K ≥ 1. Then one can cover Ω by balls B such that dist(B,Rd\Ω) ∼d

Kdiam(B), and such that each point in Ω is contained in at most Od(1) balls.

These decompositions can be used to prove some minor variants of the Calderón-
Zygmund decomposition, which we will not describe in detail here.

5. Exercises

• Q1 (Hardy-Littlewood maximal inequality for filtrations) Let (X,B, µ) be a
measure space, and let Bn be an increasing sequence of σ-finite σ-algebras
in B (thus Bn ⊂ Bn+1 for all n ∈ Z). Show that

‖ sup
n

|E(f |Bn)|‖L1,∞(X,B,µ) ≤ ‖f‖L1(X,B,µ)

and hence

‖ sup
n

|E(f |Bn)|‖Lp(X,B,µ) .p ‖f‖Lp(X,B,µ)

for all 1 < p ≤ ∞ and all B-measurable f for which the right-hand side
is finite. (Hint: use monotone convergence to reduce to finitely many Bn.
Reduce further to the case when the Bn are countably generated (by using
the level sets of the E(f |Bm) for rational intervals). Reduce further still
to the case where the Bn are finitely generated, i.e. finite. Now adapt the
dyadic argument. There are also simpler arguments which do not require all
of these reductions.) This inequality is also known as Doob’s inequality, and
implies in particular that E(f |Bn) converges pointwise a.e. to E(f |

∨
n Bn)

whenever f ∈ L1(X,B, µ).
• Q2 (Baby Besicovitch covering lemma) Let I1, . . . , IN be a collection of
intervals on the real line. Show that there exist a subcollection In1 , . . . , Ink

such that In1 ∪ . . . ∪ Ink
= I1 ∪ . . . ∪ IN , and such that every point x ∈ R

belongs to at most O(1) of the intervals In1 , . . . , Ink
. What is the best

explicit bound for O(1) you can get?
• Q3. Show that if f : R → C is supported on [0, 1], then

‖Mf‖L1([0,1]) . ‖f‖L logL([0,1]).

(Hint: use Q10 from last week’s notes.)
• Q4. For any locally integrable f : Rd → C, let M✷f denote the rectangular
maximal function

M✷f(x) := sup
R∋x

∫
−

R

|f(y)| dy
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where R ranges over all rectangles with sides parallel to the coordinate
axes which contain x. Show that M✷ is bounded on Lp for all 1 < p ≤ ∞.
(Hint: prove by induction, controlling the d-dimensional rectangular max-
imal function by the d − 1-dimensional “horizontal” rectangular maximal
function, applied to a one-dimensional “vertical” maximal function. A cer-
tain amount of application of the Fubini-Tonelli theorem may be needed.)
Show by example that M✷ is not of weak-type (1, 1) in dimensions d ≥ 2.

• Q5 (Hedberg’s inequality). Let 1 ≤ p < ∞, 0 < α < d/p, and let f be
locally integrable on Rd. Establish Hedberg’s inequality

∫
Rd

|f(y)|

|x− y|d−α
dy .d,α,p ‖f‖

αp

d

Lp(Rd)
(Mf(x))1−

αp

d

for all y ∈ Rd. (Hint: use symmetries to normalise as many quantities
as you can, and then divide the integral either dyadically, or into a region
near x and a region away from x, estimating the two regions differently.)
Use Hedberg’s inequality and the Hardy-Littlewood maximal inequality to
obtain another proof of the Hardy-Littlewood-Sobolev theorem from last
week’s notes.

• Q6 (Lebesgue points). Let f be a locally integrable function on Rd. Call
a point x ∈ Rd a Lebesgue point if there exists a number c such that
limr→0

∫
−

B(x,r)
|f(y)−c| dy = 0. Show that almost every point is a Lebesgue

point, and that c is equal to f(x) almost everywhere.
• Q7 (Fundamental theorem of calculus) Let f : R → C be locally integrable,

and let F (x) :=
∫ x

0
f(y) dy (with the usual convention that

∫ −x

0
= −

∫ 0

−x
).

Show that F is differentiable at every Lebesgue point of f , and that F ′ = f
almost everywhere.

• Q8. Let (X,B, µ, T ) be a measure-preserving system. Let BT = {E ∈ B :
T (E) = E} be the elements of B which are T -invariant (up to sets of mea-
sure zero, of course). Show that for any f ∈ Lp(B) and 1 ≤ p < ∞, the av-

erages 1
N

∑N
n=1 T

nf converge in Lp norm and pointwise almost everywhere

to E(f |BT ). In particular, when X is ergodic (thus the only invariant sets

have zero measure or full measure), conclude that 1
N

∑N
n=1 T

nf converges
pointwise and in Lp norm to

∫
X
f dµ.

• Q9 (Poincare recurrence theorem). Let (X,B, µ, T ) be a measure-preserving
system, and let f ≥ 0 be non-negative with

∫
X
f dµ > 0. Show that∫

X fT nf dµ > 0 for infinitely many n ≥ 1.

• Q10 (Heat kernels) For any t > 0 and any f ∈ Lp(Rd) for some 1 ≤ p ≤ ∞,
define the heat kernel et∆f by

et∆f(x) :=
1

(4πt)d/2

∫
Rd

e−|x−y|2/4tf(y) dy.

Show that if 1 ≤ p < ∞ and f ∈ Lp(Rd), then et∆f converges both
pointwise and in norm to f as t → 0.

• Q11 (Fatou’s theorem) Let f ∈ Hp(D) for some 1 < p ≤ ∞, and let f1 be
as in Theorem 3.2. Show that for almost every θ ∈ R/Z, we have

lim
n→∞

f(zn) = f1(θ)
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whenever zn ∈ D is a sequence of points converging to e2πiθ non-tangentially
in the sense that ∠(e2πiθ − zn), e

2πiθ is uniformly bounded away from π/2.
(Hint: first reduce to a fixed angle of non-tangentiality (e.g. all angles less
than pi/2 - 1/n), and then build an appropriate “non-tangential maximal
function”, formed by taking suprema over all points in a sector with apex
e2πiθ and this fixed angle of non-tangentiality. Use the kernel bounds to
bound this maximal function by the Hardy-Littlewood maximal operator.)

• Q12 Let f ∈ L1(Rd), and let B be a ball such that Mf ≥ λ at every point
of B. Show that Mf &d λ at every point of 2B.

• Q13 (Relationship between dyadic and non-dyadic Hardy-Littlewood max-
imal inequalities) Let f : Rd → C be locally integrable. Establish the
pointwise bound

|{M∆f ≥ Cdλ}| ≤ |{Mf ≥ λ}| .d |{M∆f ≥ cdλ}|

for some cd > 0 depending only on d.
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