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As usual:  2D Ising Magnet

Simplest example of phase transition with 

genuine cooperative phenomena.

I.  Background Discussion

Standard NN model: Each site 
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I.  Background Discussion

Rules:
 = spin configuration,

P e H ( )
“boundary conditions”.

What happens when volume ! ! ?

d = 1, (Landau)  " .

Extension of Landau’s result to d > 1 ...

– Peierls Argument –
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In d = 2, not so many contours,  large, infinite volume state with + b.c. 

has statistical bias for 0 = +1.       Magnetization is positive.



I.  Background Discussion

Remarks:
(1)  Need to prove that for <<  1, unique state (independent of b.c.).

(2)  Original argument difficult to follow.

• Onsagar (40’s)

• Griffiths, Dobrushin (60’s)

(3)  Real spins?  O(2) or O(3) symmetry.

No magnetization (d = 2);   Mermin  –Wagner.

But:  Ligand–field effects break O(N) symmetry.  

Ising approximation good enough. (Can prove this).  

(4)  Great model of attractive cooperative phenomena.

Binary alloys, adsorbed gasses, math, other fields of science.



II.  Real 2D Magnets.

Can imagine electron spins (e.g. in a plane) quantized so as 

to point up/down.

Origin of ferromagnetic force:  Quantum exchange

(usually antiferromagnetic).

– Mysterious –

But, magnetic system had genuine long–range antiferromagnetic 

interaction.  [Dipole–dipole interaction.]
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II.  Real 2D Magnets.
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“Small.”
“Not long range.”
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For all , any  > 0, magnetization is zero.

Remarks:  Known to greater/lesser extent in physics community.

[Kivelson, Spivak (2004)]
[1], [5], [6], [8], [9], 

[12], [15], [16], [18], 

[19], [20], [23].

“Stripes”Actually, big open question.

(Giuliani, Lebowitz, Lieb)



II.  Real 2D Magnets.

Many similar sounding results from early 80’s.

R. Israel, A. Sokal
G is “generic interaction” (from the Banach 

space of all things that can be).
H =H 0 G

Then, generically, no magnetization.

But, result easy to understand: G has very long–range interac-

tions.  In language of charges, 

system cannot support non–neu-

tral configurations.

Van Enter  (1981).  Provid-

ed examples of (non–ge-

neric) interactions which 

do this.  Also conjectured 

present result (for powers 

less than 3).
Here:  Not a bulk effect.  

    It is a surface effect.



III.  Physical Arguments.

Argument of Kivelson–Spivac (simplest version):

(1)  Suppose m > 0.  Then states with +m and –m.

L

Put two together and calculate 

surface tension.
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Start with 2 < s < 3.



III.  Physical Arguments.

L

Integral difficult, 

but scale by L.
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Claim:  Legit (@ short distance) even without lattice cutoff.



III.  Physical Arguments.

Check:  x  –x = , do x  integration; order 1.

Now:  y –y = ; fixed , integrate y  has range ~ .

Got: d
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Left with  
2

0

d
s  which is fine if s < 3.

If s = 3, must actually do integral 

(with lattice cutoff).



III.  Physical Arguments.

Conclusion:  ! [ ]L m L
s(const.) 2 4

 (s < 3).

Negative surface tension, cannot be two such states; m = 0.

Similar situation for s = 3.  Put in cutoff a, L4–s ! log  L/a

Remarks.  Hard to refute but ...

(•)  Assumed homogeneity; s = 3, all scales contribute.

         What if interfacial region weird, non localized.

(•)  Mathematically, difficult place to start.

[Need to assume/establish properties of states which you 

aim to prove do not exist.]



IV.  Mathematical Arguments.

Mathematical approach; slightly different perspective.

But closely related.  First:

Theorem  (Thermodynamic statement – as strong as possible)
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for all , any  > 0, m
*
( ) = 0.



IV.  Mathematical Arguments.

•  In any translation invariant state, 0  = 0.

•  In any state, block magnetization, 
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IV.  Mathematical Arguments.

Starting point:  Find state which has purported magnetization.

(Pure ferromagnet, use limiting state of + b.c. -- no guarantee here.)

Take limit of h > 0 (limiting) torus states.

(a)  Can do this (e.g. Israel’s book, Simon’s book).

(b)  Will have “magnetization” (e.g. average or block) = m
*
( ).

(c)  Translation invariant.
(But no guarantee of decay of correlations.)

–
T



IV.  Mathematical Arguments.

Idea:  Take L!L block, 
L
.
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random variable.

Represents “long distance” contri-

bution to interaction between inside 

and outside of L .

Somehow,   T
L
 ~ c(m

*
)
2L4-s  (s < 3)

T
L
 ~ c(m

*
)
2L   log L  (s = 3).

But, if this is true, Boltzman factor would “motivate turnover” 

of the block. 

Magnetization has to be zero.



IV.  Mathematical Arguments.

Hard days:  Try to show if m
*
 > 0 then 

Prob.(T
L
 ! c(m

*
)
2L4-s

) !1 (exponentially). And similarly...

Difficult enough (s < 3); s = 3 statement would require 

multi–scale analysis. 

Just deal with the average of T
L
.

Usually this sort of approach not enough.  But, bounded spins, 

etc. T
L
 is going to have (unless m

*
 = 0) an average which is 

an appreciable fraction of its maximum value.



IV.  Mathematical Arguments.

Define quantity (deterministic) which is the maximum value of T
L
:
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Claim:  2 < s < 3,    T
L
 ~ QL4 – s

s = 3,       T
L
 ~ AL log L

Second one, “a little delicate”

Goal (more later) to show that TL T
 ~ (m

*
)2

T
L
.

Would be easy if we had clustering of correlations:  ! !
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Block average property.



IV.  Mathematical Arguments.

Proposition:  For any , 0 <  < 1, 

TL T
 ! (m

*
)2

T
L
.
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(a)  From block magnetization property, for 
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Standard from “theory of Gibbs states (actually thermodynamic).

(b)  1 << a << l
0
 << L.  If both “good”, 

contribution: 2 1
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(c)  If either “bad” take negative of 

this; probability .

Note:  total contribution from 
sites “right up against the 

boundary” will be of order 

l
0
L  << T

L
.



IV.  Mathematical Arguments.

Upshot:  

Sum over all boxes -- modulo small details, e.g. O(l
0
L) @ 

boundary -- and the proposition is proved.  

Now, exploit fact that (if m
*
 > 0),

TL T is a fraction of its max value.
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IV.  Mathematical Arguments.

On the one hand:

0 (m
*
)2 1

T
L

T
L

Clear that if m
*
 > 0, then for  << 1, will have probability of order unity to exceed T

L
.

But, for any , can use Peierls–type argument:

Both cannot be true, 2nd irrefutable.  Must have m
*
 = 0.

Can actually avoid “proof by contradiction”.
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IV.  Mathematical Arguments.
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 (by the proposition). Can 

bound magnetization above by “arbitrary small #”. 



Conclusions/  Open Problems:

(1)  Stripes.

(2)  Continuous magnetization @ h ! 0.

(3)  Critical power for O(N)?  Ising:  d < s ! d+1, -- d " 2. 

XY, O(3), ¿d < s < d+2? -- d " 3.

(4)  Extreme long range:  Powers s smaller than d; differen-

tiability wrt “background charge”.

(0) In plane quantization axis.


