On the Absence of Ferromagnetism in Typical 2D Ferromagnets

Joint work:

M. Biskup
(UCLA Math)

S. A. Kivelson
(Stanford Physics)

Talk Outline:

I. Background Ising Discussion
II. Real Magnets
III. Physical Arguments
IV. Mathematical Arguments

I. Background Discussion

As usual: 2D Ising Magnet

Simplest example of phase transition with genuine cooperative phenomena.

Standard NN model:

Each site \vec{r} of the square lattice

$$
\begin{gathered}
\sigma_{\vec{r}}= \pm 1 \\
-\mathcal{H}=\sum_{\left\langle\vec{r}, \vec{r}^{\prime}\right\rangle} \sigma_{\vec{r}} \sigma_{\vec{r}^{\prime}} .
\end{gathered}
$$

Rules:

$$
\underline{\sigma}=\text { spin configuration },
$$

$$
\mathbb{P}(\underline{\sigma}) \propto \mathrm{e}^{-\beta \mathcal{H}(\underline{\sigma})} \quad \text { "boundary conditions". }
$$

What happens when volume $\rightarrow \infty$?

$$
\mathrm{d}=1,(\text { Landau }) \varnothing .
$$

Extension of Landau's result to $d>1$...

- Peierls Argument -

$$
\mathbb{P}(\gamma) \leq \mathrm{e}^{-2 \beta|\gamma|}
$$

In $d=2$, not so many contours, β large, infinite volume state with + b.c. has statistical bias for $\sigma_{0}=+1$. Magnetization is positive.

Remarks:

(1) Need to prove that for $\beta \ll 1$, unique state (independent of b.c.).
(2) Original argument difficult to follow.

- Onsagar (40's)
- Griffiths, Dobrushin (60's)
(3) Real spins? $O(2)$ or $O(3)$ symmetry.

No magnetization $(d=2)$; Mermin-Wagner.
But: Ligand-field effects break $O(N)$ symmetry.
Ising approximation good enough. (Can prove this).
(4) Great model of attractive cooperative phenomena.

Binary alloys, adsorbed gasses, math, other fields of science.

II. Real 2D Magnets.

Can imagine electron spins (e.g. in a plane) quantized so as to point up/down.

Origin of ferromagnetic force: Quantum exchange (usually antiferromagnetic).

- Mysterious -

But, magnetic system had genuine long-range antiferromagnetic interaction. [Dipole-dipole interaction.]

If $\vec{S}_{\vec{r}_{i}} \& \vec{S}_{\vec{r}_{j}}$ genuine spins, $\varepsilon \frac{\vec{S}_{\vec{r}_{i}} \cdot \vec{S}_{\vec{r}_{j}}-3\left(\vec{r}_{i j} \cdot \vec{S}_{\vec{r}_{i}}\right)\left(\vec{r}_{i j} \cdot \vec{S}_{\vec{r}_{j}}\right)}{\left|\vec{r}_{i j}\right|^{3}}$.

II. Real 2D Magnets.

Today: $\quad-\mathcal{H}=\sum_{\left\langle\vec{r}, \vec{r}^{\prime}\right\rangle} \sigma_{\vec{r}} \sigma_{\vec{r}^{\prime}}-\varepsilon \sum_{\left(\vec{r}, \vec{r}^{\prime}\right)} \frac{\sigma_{\vec{r}} \sigma_{\vec{r}^{\prime}}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{3}}$
For all β, any $\varepsilon>0$, magnetization is zero.
Remarks: Known to greater/lesser extent in physics community.
[Kivelson, Spivak (2004)]
[1], [5], [6], [8], [9],
[12], [15], [16], [18],
[19], [20], [23].
Actually, big open question.
"Stripes"
(Giuliani, Lebowitz, Lieb)

Many similar sounding results from early 80 's.

R. Israel, A. Sokal

$$
\mathcal{H}=\mathcal{H}_{0}+\mathfrak{G}
$$

\mathfrak{G} is "generic interaction" (from the Banach space of all things that can be).

Then, generically, no magnetization.

But, result easy to understand:
Van Enter (1981). Provid- ed examples of (non-generic) interactions which do this. Also conjectured present result (for powers less than 3).
\mathfrak{G} has very long-range interactions. In language of charges, system cannot support non-neutral configurations.

Here: Not a bulk effect. It is a surface effect.

III. Physical Arguments.

Argument of Kivelson-Spivac (simplest version):

(1) Suppose $m>0$. Then states with $+m$ and $-m$.

Put two together and calculate surface tension.

$$
\tau \sim \frac{1}{L}[\kappa L-I(L)]
$$

short range term

Start with $2<s<3$.

III. Physical Arguments.

$$
\int_{\substack{+L>y^{\prime}>0 \\-L<y<0}} \frac{d x d y d x^{\prime} d y^{\prime}}{\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]^{y / 2}}
$$

Integral difficult, but scale by L.

$$
\left.\left.L_{\substack{\mid-s}} \frac{d x d y d x^{\prime} d y^{\prime}}{|x|| | \mid<1} \right\rvert\, \substack{\left|x^{\prime},\left|y^{\prime}\right|<1\right.} ~\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}\right]^{\prime / 2}
$$

Claim: Legit (@ short distance) even without lattice cutoff.

Check: $x-x^{\prime}=\Delta$, do x^{\prime} integration; order 1 .
Now: $y-y^{\prime}=\theta$; fixed θ, integrate y^{\prime} has range $\sim \theta$.

Got: $\int d \Delta \int_{\theta>0} \frac{\theta d \theta}{\left(\theta^{2}+\Delta^{2}\right)^{s / 2}}$, scale out Δ;

$$
\int_{\theta>0} \frac{\theta^{2} d \theta}{\theta^{s}} \int d\left(\frac{\Delta}{\theta}\right) \frac{1}{\left(1+\frac{\Delta^{2}}{\theta^{2}}\right)^{s / 2}} .
$$

Left with $\int_{\theta>0} \frac{\theta^{2} d \theta}{\theta^{s}}$ which is fine if $s<3$.
If $s=3$, must actually do integral (with lattice cutoff).

Conclusion: $\tau \sim\left[\kappa L-\right.$ (const.) $\left.\varepsilon m^{2} L^{4-s}\right](s<3)$.
Negative surface tension, cannot be two such states; $m=0$.
Similar situation for $s=3$. Put in cutoff $a, L^{4-s} \rightarrow \log L / a$
Remarks. Hard to refute but ...
(•) Assumed homogeneity; $s=3$, all scales contribute. What if interfacial region weird, non localized.
(•) Mathematically, difficult place to start.
[Need to assume/establish properties of states which you aim to prove do not exist.]
IV. Mathematical Arguments.

Mathematical approach; slightly different perspective.
But closely related. First:
Theorem (Thermodynamic statement - as strong as possible)

$$
\begin{aligned}
& f(\beta, h)=-\frac{1}{\beta} \lim _{L \rightarrow \infty} \frac{1}{L^{2}} \log Z_{L}(\beta, h) \\
& m(\beta, h)=-\left.\frac{\partial f}{\partial h}\right|_{h^{+}} \quad m_{*}(\beta)=-\left.\frac{\partial f}{\partial h}\right|_{0^{+}}
\end{aligned}
$$

for all β, any $\varepsilon>0, m_{*}(\beta)=0$.

- In any translation invariant state, $\left\langle\sigma_{0}\right\rangle=0$.
- In any state, block magnetization,

$$
\lim _{L \rightarrow \infty} \frac{1}{L^{2}} \sum_{|\vec{r}|<L} \sigma_{\vec{r}}
$$

goes to zero.

- $\mathbb{P}\left(\left.\frac{1}{L^{2}} \sum_{|\vec{r}|<L} \sigma_{\vec{r}}>\eta L^{2} \right\rvert\,\right.$ outside $)<\mathrm{e}^{\delta L^{2}}$.

IV. Mathematical Arguments.

Starting point: Find state which has purported magnetization.
(Pure ferromagnet, use limiting state of + b.c. -- no guarantee here.)

Take limit of $h>0$ (limiting) torus states.

(a) Can do this (e.g. Israel's book, Simon's book).
(b) Will have "magnetization" (e.g. average or block) $=m_{*}(\beta)$.
(c) Translation invariant.
(But no guarantee of decay of correlations.)

$$
\langle-\rangle_{\mathbb{T}}
$$

IV. Mathematical Arguments.

Idea: Take $L \times L$ block, Λ_{L}.

$$
\mathbf{T}_{L}=\sum_{\substack{\vec{r} \text { inside } \Lambda_{L} \\ \vec{r}^{\prime} \text { outside } \Lambda_{L}}} \frac{\sigma_{\vec{r}} \sigma_{\vec{r}^{\prime}}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{s}} \xlongequal{l} \text { random variable. }
$$

Somehow, $\mathbf{T}_{L} \sim \mathrm{c}\left(m_{*}\right)^{2} L^{4-s} \quad(s<3)$

$$
\mathbf{T}_{L} \sim \mathrm{c}\left(m_{*}\right)^{2} L \log L \quad(s=3)
$$

But, if this is true, Boltzman factor would "motivate turnover" of the block.

Magnetization has to be zero.

Hard days: Try to show if $m_{*}>0$ then
Prob. $\left(\mathbf{T}_{L} \geq \mathrm{c}\left(m_{*}\right)^{2} L^{4-s}\right) \rightarrow 1$ (exponentially). And similarly...
Difficult enough ($s<3$); $s=3$ statement would require multi-scale analysis.

Just deal with the average of \mathbf{T}_{L}.

Usually this sort of approach not enough. But, bounded spins, etc. \mathbf{T}_{L} is going to have (unless $m_{*}=0$) an average which is an appreciable fraction of its maximum value.

Define quantity (deterministic) which is the maximum value of \mathbf{T}_{L} :

$$
T_{L}=\sum_{\substack{\vec{r} \text { inside } \Lambda_{L} \\ \vec{r}^{\prime} \text { outside } \Lambda_{L}}} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|^{s}}
$$

Claim: $2<s<3, \quad T_{L} \sim Q L^{4-s}$

$$
s=3, \quad T_{L} \sim A L \log L
$$

Second one, "a little delicate"
Goal (more later) to show that $\left\langle\mathbf{T}_{L}\right\rangle_{\mathbb{T}} \sim\left(m_{*}\right)^{2} T_{L}$.
Would be easy if we had clustering of correlations: $\left\langle\sigma_{\bar{r}} \sigma_{\bar{r}^{\prime}}\right\rangle_{\mathbb{T}} \longrightarrow m_{*}^{2}$.
Block average property.

IV. Mathematical Arguments.

Proposition: For any $\lambda, 0<\lambda<1$,

$$
\left\langle\mathbf{T}_{L}\right\rangle_{\mathbb{T}} \geq \lambda\left(m_{*}\right)^{2} T_{L}
$$

(a) From block magnetization property, for

Note: total contribution from sites "right up against the boundary" will be of order

$$
l_{0} L \ll T_{L} \text {. }
$$

any $\mu, 0<\mu<m_{*}$
$\operatorname{Prob} .\left(\frac{1}{a^{2}} \sum_{\vec{r} \text { in } \Lambda_{\mathrm{a}}} \sigma_{\overrightarrow{\mathrm{r}}}>\mu a^{2}\right) \longrightarrow 1$
Standard from "theory of Gibbs states (actually thermodynamic).
(b) $1 \ll a \ll l_{0} \ll L$. If both "good", contribution:

$$
\underset{\substack{\vec{r} \text { in } \Lambda_{1} \\ \vec{r}^{\prime} \text { in } \Lambda_{2}}}{ } \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|^{s}}
$$

(c) If either "bad" take negative of this; probability η.

Upshot:

$$
\left\langle\left.\sum_{\substack{\vec{r} \text { in } \Lambda_{1} \\ \vec{r}^{\prime} \text { in } \Lambda_{2}}} \frac{\sigma_{\vec{r}} \sigma_{\vec{r}^{\prime}}}{\left|\vec{r}-\vec{r}^{\prime}\right|^{s}}\right|_{\mathbb{T}} \geq\left([1-\eta] \mu^{2}-\eta\right) \sum_{\substack{\vec{r} \\ \vec{r}^{\prime} \text { in } \Lambda_{1}}} \frac{1}{\left|\vec{r}-\vec{r}^{\prime}\right|^{s}}\right.
$$

Sum over all boxes -- modulo small details, e.g. $\mathrm{O}\left(l_{0} L\right) @$ boundary -- and the proposition is proved.

Now, exploit fact that (if $m_{*}>0$),
$\left\langle\mathbf{T}_{L}\right\rangle_{\mathbb{T}}$ is a fraction of its max value.

IV. Mathematical Arguments.

On the one hand:

Clear that if $m_{*}>0$, then for $\kappa \ll 1$, will have probability of order unity to exceed κT_{L}.
But, for any κ, can use Peierls-type argument:

$$
\operatorname{Prob} .\left(\mathbf{T}_{L}>\kappa T_{L}\right) \leq e^{-2 \beta\left(\kappa T_{L}-4 J L\right)} \longrightarrow 0
$$

Both cannot be true, $2^{\text {nd }}$ irrefutable. Must have $m_{*}=0$.
Can actually avoid "proof by contradiction".

$\left\langle\mathbf{T}_{\mathbf{L}}\right\rangle_{\mathbb{T}} \leq \kappa \operatorname{Prob} .\left(\mathbf{T}_{\mathbf{L}}<\kappa\right)+T_{L} \operatorname{Prob} .\left(\mathbf{T}_{\mathbf{L}} \geq \kappa\right)$.

-- Solve for Prob. $\left(\mathbf{T}_{L}>\kappa T_{L}\right)$--

$$
\frac{\frac{1}{T_{L}}\left\langle\mathbf{T}_{\mathbf{L}}\right\rangle_{\mathbb{T}}-\kappa}{(1-\kappa)}
$$

But we have $\left\langle\mathbf{T}_{L}\right\rangle_{\mathbb{T}} \geq \lambda\left(m_{z}\right)^{2} T_{L}$ (by the proposition). Can bound magnetization above by "arbitrary small \#".

Conclusions/Open Problems:
 (0) In plane quantization axis.

(1) Stripes.

(2) Continuous magnetization @ $h \neq 0$.
(3) Critical power for $O(N)$? Ising: $d<s \leq d+1,-d \geq 2$.

$$
\mathrm{XY}, \mathrm{O}(3), \measuredangle d<s<d+2 ?--d \geq 3 .
$$

(4) Extreme long range: Powers s smaller than d; differentiability wrt "background charge".

