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1 Introduction.

Let q(x) = q(x1, x2, x3) be a positive definite ternary quadratic form with inte-
gral coefficients. In 1946 Ross and Pall [RP] conjectured that every sufficiently
large square-free integer that is represented by q modulo N for all N is in fact
integrally represented. This conjecture was proven in 1988 [Du1] as an appli-
cation of bounds for sums of Kloosterman sums given by Iwaniec [Iw] (see also
[DS-P] and [Du2] for an exposition and references.)

In this paper I will quantify “sufficiently large” in this result in terms of the
determinant D of q, which is defined by the 3× 3 determinant

D = det(∂2q/∂xi∂xj)

and is known to be a positive even integer.

Theorem 1 There is an absolute constant c > 0 so that q(x) = n has an
integral solution provided that

n > cD337

is square-free and that the congruence q(x) ≡ n (mod 8D3) has a solution. The
constant c is ineffective.

2 A uniform asymptotic formula.

Theorem 1 follows from a uniform asymptotic formula for the number of repre-
sentations

rq(n) = #{x ∈ Z3 ; q(x) = n} .

This quantity does not change if q is replaced by a Z-equivalent form, that is
one obtained from q by an invertible integral change of variables. The genus
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G of q consists of those forms that are equivalent to q under invertible variable
changes over the p-adic integers, for all p. The genus G is known to split into
finitely many Z-equivalence classes. The average number of representations of
n by forms in G is

r(n,G) = M(G)−1
∑
{q}∈G

ω−1
q rq(n) (1)

the sum being over Z-inequivalent q in G. Here ωq is the number of automorphs
of q and

M(G) =
∑
{q}∈G

ω−1
q (2)

is the mass (or weight) of the genus G. We shall establish the following uniform
asymptotic formula.

Theorem 2 Fix ε > 0. Then for n square-free we have

rq(n) = r(n,G) +O(D
11
2 n

1
2−

1
28 (Dn)ε)

where the implied constant depends only on ε.

It follows from the fundamental work of Siegel [Si] that for n square-free we
have the formula

r(n,G) = κL(1, χ)N (n; q)
√
n/D, (3)

where χ(·) =
(
−2Dn∗

·

)
is the Kronecker symbol with n∗ the discriminant of

Q(
√
n) and L(s, χ) is the Dirichlet L-function. Also

N (n; q) = #{x ∈ (Z/mZ)3 ; q(x) ≡ n(mod m)}m−2 (4)

for m = (2D)3 and κ > 0 is a constant. Theorem 1 is a consequence of the
Theorem 2 together with the following lower bound, that is valid for all ε > 0
under the condition that the congruence q(x) ≡ n (mod 8D3) has a solution:

r(n,G) �ε n
1
2D− 13

2 (nD)−ε. (5)

This follows from (3) and Siegel’s lower bound for L(1, χ) and is where the
ineffectivity of c in Theorem 1 arises.

As in [DS-P] one may refine Theorem 2 by replacing r(n,G) by the associated
quantity for the spinor genus of q. This allows one to weaken the condition on
n to be that the square part of n be prime to the level of q (or has a limited ged
with the level). Further refinements as in [DS-P] should be possible as well.
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3 Weight 3/2 modular forms.

In this section we will reduce the proof of Theorem 2 to an upper bound for
the L2 norm of a cusp form by applying a known estimate from [DS-P] for the
Fourier coefficients of a cusp form of weight 3/2.

The level of q is the smallest N ∈ Z+ so that NA−1 is even integral, where
A = (∂2q/∂xi∂xj). It is known that (see [Le] p. 404)

N | 2D | 4N2 . (6)

Let a(n) = r(n,G)− rq(n). Then by [Si] we have that

f(z) =
∞∑

n=1

a(n)e(nz) ∈ S 3
2
(Γ0(N), ψ) ,

the space of cusp forms of weight 3
2 for Γ0(N) with character ψ, a real character

mod N . By the proof of Lemma 2 in [DS-P] we have that for n square-free

|a(n)| �ε ‖f‖N
1
2−

1
28+ε (7)

where
‖f‖2 =

∫
Γ0(N)\H

|f |2y 3
2 dµ

with dµ = dx dx/y2. To proceed, we must estimate ‖f‖. Note that we are using
Γ0(N) instead of Γ1(N) as is done in Lemma 2 of [DS-P]. A variant of the
argument used in the next result occurred in [DFI].

Lemma 1 Let f(z) =
∑∞

n=1 a(n)e(nz) be a cusp form of weight 3
2 in

S 3
2
(Γ0(N), ψ). Then

‖f‖2 � Γ(α) d(N)N2α
∞∑

n=1

|a(n)|2n−α,

where α > 1
2 is any number so that the series converges. Here d(·) is the divisor

function and the implied constant is absolute.

Lemma 1 will be proven in the next section. Granting this, to finish the proof of
Theorem 2 we need an upper bound for a(n) = r(n,G)− rq(n) that is uniform
in D, hence in N . From (1) we have

|a(n)| �M(G)r(n,G) (8)

since ωq ≤ 48 ([Ne] p. 180). Now from (2)

M(G) ≤ h3(D)
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where h3(D) is the number of all classes of q with determinant D. By Minkowski
reduction theory (see [Ca]) we have the crude bound

h3(D) �
∑

0<a≤b≤c
abc≤2D

a2b� D2 .

Thus from (3) and (8)
|a(n)| �ε N

1
2D

3
2 (nD)ε

since from (4)
N (n; q) � Dε .

Taking ε = 2 + 2ε in the lemma gives

‖f‖2 � N4D3(ND)4ε

and so Theorem 2 follows by (6) and (7).

4 A bound for the L2 norm of a cusp form.

In this section we will prove Lemma 1 and thus complete the proof of Theorem
2. Let D be the standard fundamental domain for the modular group Γ = Γ0(1)

D = {z = x+ iy; |x| ≤ 1/2 and |z| ≥ 1} .

A fundamental domain for Γ0(N) is ∪σσD, where σ runs over coset representa-
tives for Γ0(N) in Γ. Thus

‖f‖2 =
∑

σ

∫
D
|f(σz)|2Im(σz)

3
2 dµ. (9)

For each σ we have a Fourier expansion in the cusp σ(∞):

f(σz) = εσ

∑
n>0

aσ(n)e
(
nz

wσ

)
where |εσ| = 1 and wσ is the width of the cusp. Thus∫

D
|f(σz)|2(Im σz)

3
2 dµ ≤

∫ ∞

√
3

2

∫ wσ

0

|f(σz)|2(Im σz)
3
2 dµ

= wσ

∫ Cσ

√
3

2

∑
n

|aσ(n)|2e−4πny/wσy−1/2dy

= 2
∫ Cσ

√
3

2

∫ wσ
2

−wσ
2

|f(σz)|2(Im σz)
3
2 dµ (10)
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where Cσ =
√

3
2 + wσC and C > 0 is an absolute constant so that∫ ∞

t

e−yy−
1
2 dy ≤ 2

∫ t+C

t

e−yy−
1
2 dy

for all t > 0. We may choose the coset representations

σ =
(
α β
γ δ

)
with γ | N and |δ| ≤ γ

2
.

For such σ the cusp σ(∞) = α
γ has width wσ = N/(γ2, N) ≤ N/γ, so that

Cσ =
√

3
2

+ wσC ≤
√

3
2

+
NC

γ
.

Now for z in range of (10) we have

Im(σz) = y((γx+ δ)2 + γ2y2)−1 ≥ 4y((N + γ)2 + γ2y2)−1 � C−1N−2

and∣∣∣∣Re(σz)− α

γ

∣∣∣∣ = γ−2

∣∣∣∣x+
δ

γ

∣∣∣∣
((

x+
δ

γ

)2

+ y2

)−1

� γ−2y−1 ≤ 1 .

Thus changing variables z to σ−1z in (10) we get∫
D

|f(σz)|2(Im σz)
3
2 dµ�

∫
C−1N−2

∫ 1

0

|f(z)|2 y 3
2 dµ

and hence from (9)

‖f‖2 � Nd(N)
∫ ∞

C−1N−2

∫ 1

0

|f(z)|2 y 3
2 dµ (11)

since the index of Γ0(N) in Γ is

N
∏
p|N

(
1 +

1
p

)
� Nd(N) .

Putting the Fourier expansion of f(z) into (11) we get

‖f‖2 � Nd(N)
∞∑

n=1

|a(n)|2
∫ ∞

C−1N−2
e−4πny y

1
2
dy

y

= C− 1
2 d(N)

∞∑
n=1

|a(n)|2
∫ ∞

1

e−
4πnt
CN2 t

1
2
dt

t

= C− 1
2 d(N)

∞∑
n=1

|a(n)|2
∫ ∞

1

e−
4πnt
CN2 tα

dt

t
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for any α > 1
2 , and this is

≤ C− 1
2 d(N)

∞∑
n=1

|a(n)|2
∫ ∞

0

e−
4πnt
CN2 tα

dt

t

� Γ(α)N2αd(N)
∞∑

n=1

|a(n)|2n−α

for any α > 1
2 so that the series converges.
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