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1 Introduction.

Let q(z) = g(x1,z2,23) be a positive definite ternary quadratic form with inte-
gral coefficients. In 1946 Ross and Pall [RP] conjectured that every sufficiently
large square-free integer that is represented by ¢ modulo N for all N is in fact
integrally represented. This conjecture was proven in 1988 [Dul] as an appli-
cation of bounds for sums of Kloosterman sums given by Iwaniec [Iw] (see also
[DS-P] and [Du2] for an exposition and references.)

In this paper I will quantify “sufficiently large” in this result in terms of the
determinant D of ¢, which is defined by the 3 x 3 determinant

D = det(9°q/0x;0x;)

and is known to be a positive even integer.

Theorem 1 There is an absolute constant ¢ > 0 so that g(x) = n has an
integral solution provided that

n > ¢D37

is square-free and that the congruence q(x) = n (mod8D3) has a solution. The
constant c is ineffective.

2 A uniform asymptotic formula.

Theorem 1 follows from a uniform asymptotic formula for the number of repre-
sentations

rq(n) = #{z € Z°; q(z) = n}.

This quantity does not change if ¢ is replaced by a Z-equivalent form, that is
one obtained from g by an invertible integral change of variables. The genus
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G of ¢ consists of those forms that are equivalent to ¢ under invertible variable
changes over the p-adic integers, for all p. The genus G is known to split into
finitely many Z-equivalence classes. The average number of representations of
n by forms in G is

r(n,G)=M(G)™ Y wytrg(n) (1)

{a}eG
the sum being over Z-inequivalent ¢ in G. Here wy is the number of automorphs
of g and
MG = Y w' (2)
{q}eG

is the mass (or weight) of the genus G. We shall establish the following uniform
asymptotic formula.

Theorem 2 Fix e > 0. Then for n square-free we have
rqe(n) =r(n,G)+ O(D%n%_i’%(Dn)E)

where the implied constant depends only on €.

It follows from the fundamental work of Siegel [Si] that for n square-free we

have the formula
r(n,G) = k L(1,X)N (n; q)/n/D, (3)

where x(-) = ( ) is the Kronecker symbol with n* the discriminant of
Q(y/n) and L(s,x) is the Dirichlet L-function. Also

—2Dn*

N(n;q) = #{z € (Z/mZ)?; q(z) = n(mod m)}m 2 (4)

for m = (2D)® and xk > 0 is a constant. Theorem 1 is a consequence of the
Theorem 2 together with the following lower bound, that is valid for all € > 0
under the condition that the congruence ¢(x) = n (mod 8D?) has a solution:

13

r(n,G) >, n:D~ (nD)~°. (5)

This follows from (3) and Siegel’s lower bound for L(1,x) and is where the
ineffectivity of ¢ in Theorem 1 arises.

As in [DS-P] one may refine Theorem 2 by replacing r(n, G) by the associated
quantity for the spinor genus of ¢q. This allows one to weaken the condition on
n to be that the square part of n be prime to the level of ¢ (or has a limited ged
with the level). Further refinements as in [DS-P] should be possible as well.



3 Weight 3/2 modular forms.

In this section we will reduce the proof of Theorem 2 to an upper bound for
the L? norm of a cusp form by applying a known estimate from [DS-P] for the
Fourier coefficients of a cusp form of weight 3/2.
The level of ¢ is the smallest N € Z* so that NA™! is even integral, where
= (0%q/0x;0x;). Tt is known that (see [Le] p. 404)

N |2D|4N?. (6)

Let a(n) = r(n,G) — rq(n). Then by [Si] we have that
Z € S3(To(N),¢),

the space of cusp forms of weight % for T'o(N) with character v, a real character
mod N. By the proof of Lemma 2 in [DS-P| we have that for n square-free

11,
la(n)] < [[fIINz73=* (7)
where

3
L e
To(N)\H

with dp = dx dx/y?. To proceed, we must estimate || f||. Note that we are using
I'o(N) instead of I'y(N) as is done in Lemma 2 of [DS-P]. A variant of the
argument used in the next result occurred in [DFI].

Lemma 1 Let f(2) =Y 1", a(n)e(nz) be a cusp form of weight 3 in
Sa(Lo(N),v). Then

I£1I* < (e N“ZIG )=,

where o > % is any number so that the series converges. Here d(-) is the divisor
function and the implied constant is absolute.

Lemma 1 will be proven in the next section. Granting this, to finish the proof of
Theorem 2 we need an upper bound for a(n) = r(n,G) — rq(n) that is uniform
in D, hence in N. From (1) we have

la(n)] < M(G)r(n,G) (8)
since w, < 48 ([Ne] p. 180). Now from (2)

M(G) < h3(D)



where h3(D) is the number of all classes of ¢ with determinant D. By Minkowski
reduction theory (see [Ca]) we have the crude bound

hs(D) < > a’b< D?.

0<a<b<c
abe<2D

Thus from (3) and (8)
la(n)| << N2D?(nD)*

since from (4)
N(n;q) < D°.

Taking € = 2 + 2¢ in the lemma gives
IfII* < N*D*(ND)*

and so Theorem 2 follows by (6) and (7).

4 A bound for the L? norm of a cusp form.

In this section we will prove Lemma 1 and thus complete the proof of Theorem
2. Let D be the standard fundamental domain for the modular group I' = T'y(1)

D={z=z+iy; |z| <1/2and |z| > 1}.

A fundamental domain for I'g(N) is U,0D, where o runs over coset representa-
tives for I'o(N) in I'. Thus

Ty /D (o) PIm(oz)  du. (9)

For each o we have a Fourier expansion in the cusp o(oc0):

09) =20 Y- anlne (22

n>0

where |e,] =1 and w, is the width of the cusp. Thus
/ |f(o2)P(Im 02) 2 dp < / / f(02)[2(Im 02) 2 dp
D g 0
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where C, = ? + w,C and C > 0 is an absolute constant so that
oo . t+C .
/ e Yy 2dy < 2/ e Yy 2dy
t t
for all £ > 0. We may choose the coset representations

0’:(: ?) with v | N and |5\§%.

For such o the cusp o(c0) = £ has width w, = N/(y2%,N) < N/, so that

Co=—+w,C<—

V3 V3  NC
+—.
2 2 ol

Now for z in range of (10) we have

Im(oz) = y((vz + 6)> +92y*) ' > dy(N +7)> ++%>) ' > C N2

and

et
Re(oz) — —| =~72
fetes =5

Thus changing variables z to 0~z in (10) we get
2 3 ! 2 32
[ reapumentans [ [P v
D c-1N-2Jo

and hence from (9)

o] 1 3

117 < N [~ @R o an
c-1n-2Jo

since the index of T'g(N) in T is

N]] <1+;> < Nd(N).

p|N

Putting the Fourier expansion of f(z) into (11) we get

- > dmny 1Y
||f||2<<Nd<N>§j|a<n>|2/ e~tmny o3 B
1 C-1N-2 Y

1 i o0 Tnt 1 dt
=C7E(N) Y |a(n)|2/ e*‘éWﬁ?
n=1 1

= O~ 2d(N) > la(n)f? /100 e
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for any a > %, and this is

< c—%d(N)Zm(n)\?/ o~ o %
n=1 0
<L T()N**d(N) Y |a(n)[*n=*
n=1

for any a > % so that the series converges.
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