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Introduction

Given a Galois extension L/K of number fields with Galois group G, a funda-
mental problem is to describe the (unramified) primes p of K whose Frobenius
automorphisms lie in a given conjugacy class C of G. In particular, all such
primes have the same splitting type in a sub-extension of L/K. In general, all
that is known is that the primes have density |C|/|G| in the set of all primes,
this being the Chebotarev theorem.

For L/K an abelian extension Artin reciprocity describes such primes by
means of their residues in generalized ideal classes of K. In the special case
that L is obtained explicitly by adjoining to K the n-th division points of the
unit circle we have that G ⊂ GL1(Z/nZ) = (Z/nZ)∗ and the Frobenius of p is
determined by the norm N(p) modulo n. If K = Q (cyclotomic fields) we have
that G = GL1(Z/nZ) and any abelian extension of Q occurs as a subfield of
such an L for a suitable n (Kronecker-Weber). Here the Chebotarev theorem
reduces to the prime number theorem in arithmetic progressions.

In a similar manner an elliptic curve E over K gives rise to its n-th division
field Ln by adjoining to K all the coordinates of the n-torsion points. Now Ln is
a (generally non-abelian) Galois extension of K with Galois group G, a subgroup
of GL2(Z/nZ) (see [13]). In this paper we will give a global description of the
Frobenius for the division fields of an elliptic curve E, which is strictly analogous
to the cyclotomic case. This is then applied to determine the splitting of primes
in fields contained in Ln or, as we shall say, uniformized by E. As observed by
Klein (see [8]), such fields include a large class of non-solvable quintic extensions.
Our aim in this application is to provide an arithmetic counterpart to Klein’s
”solution” of quintic equations using elliptic functions.
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By using CM curves we can uniformize all abelian extensions of imaginary
quadratic fields. A classical application here is the result of Gauss that

x3 − 2

factors completely modulo a prime p > 3 if and only if

p = x2 + 27y2

for integers x and y (see [2]). One way to derive this is to determine the
Frobenius class of p in the field obtained by adjoining to Q the x-coordinates of
the 3-division points of the elliptic curve given by

y2 = x3 − 15x + 22,

which has CM by the quadratic order of discriminant -12.
Analogous results for non-solvable quintics require non-CM curves. Consider

the quintic
f(x) = x5 + 90x3 + 3645x− 6480,

which has discriminant (2)12(3)16(5)5(7)6. Its splitting field has Galois group
S5 over Q. It follows from the results of this paper that f(x) factors completely
modulo p > 7 if and only if

p = x2 − 25∆py
2

where ∆p is the discriminant of the ring of endomorphisms of the elliptic curve

y2 = x(x− 1)(x− 3)

reduced mod p. The first two such primes are 1259 and 1951 for which ∆1259 =
−31 and ∆1951 = −51 and where

1259 = (22)2 + 25 · 31 · 12

and
1951 = (26)2 + 25 · 51 · 12.

As can be checked,

f(x) ≡ (x + 734)(x + 322)(x + 26)(x + 851)(x + 585) mod 1259

and

f(x) ≡ (x + 1029)(x + 1222)(x + 839)(x + 1771)(x + 992) mod 1951.

In the non-CM case ∆p is not determined by arithmetic progressions in p. A
goal of this paper is to complement that of Shimura [15] by pointing out the
role of ∆p in such questions.

Acknowledgement: We would like to thank N. Katz for his helpful comments.

2



Outline of results.

Given an elliptic curve E defined over a number field K and a prime ideal p in
OK of good reduction for E we shall define an integral matrix σp of determinant
N(p) whose reduction modulo n gives the action of the Frobenius for Ln, the
n-th division field of E. Let ap be defined as usual by

#Ep(k) = N(p)− ap + 1 (1)

where Ep is the reduction of E at p and is defined over k, the residue field of p,
which satisfies #k = N(p) = pr.

Let R be the ring of those endomorphisms of E that are rational polynomial
expressions in the Frobenius endomorphism φp. If φp is multiplication by an
integer then R = Z and we define ∆p = 1 and bp = 0. Otherwise the ring R is
the centralizer of the Frobenius endomorphism in the endomorphism ring of Ep

over k and is an imaginary quadratic order whose discriminant we denote by
∆p. Then we shall see that p does not divide the conductor m of ∆p and that
there is a unique positive integer bp so that

4N(p) = a2
p − ∆p b2

p. (2)

We associate to p the following integral matrix of determinant N(p):

σp =
[

(ap + bpδp)/2 bp

bp(∆p − δp)/4 (ap − bpδp)/2

]
(3)

where for a discriminant ∆ we have δ = 0, 1 according to whether ∆ ≡ 0, 1 mod
4. We shall show that σp gives a global representation of the Frobenius class
over p for each n-th division field of E by reducing it modulo n, provided p is
prime to n.

Theorem 1. Let E be an elliptic curve defined over a number field K and
n > 1 an integer. Let Ln be the n-th division field of E with Galois group G
over K. Let p be a prime of good reduction for E with N(p) prime to n. Then
p is unramified in Ln and the integral matrix σp defined in (3), when reduced
modulo n, represents the class of the Frobenius of p in G.

The proof we give of this uses the theory of canonical lifts of endomorphisms
due originally to Deuring.

In analogy with the cyclotomic case, we have associated to each curve a
sequence of prime power matrices, defined in terms of arithmetic data from the
reduced elliptic curve that give the Frobenius in all of the division fields. Let
C be a conjugacy class of G and let πE(X;n, C) be the number of primes p of
good reduction with N(p) ≤ X such that σp ≡ C0 mod n for some C0 ∈ C. By
the Chebotarev theorem [1] we derive the following strict analogue of the prime
number theorem in progressions for the sequence σp :

πE(X;n, C) ∼ |C|
|G|

πK(X)

3



as X →∞, where πK(X) counts all primes of K with N(p) ≤ X.
Of more interest for us here is the fact that the splitting type of p in any

field between K and the n-th division field Ln is determined by σp mod n. For
example we get immediately a criterion for complete splitting in the full division
field in terms of the invariants ap and bp modulo n, provided n is odd.

Corollary 1. Let E be an elliptic curve defined over a number field K and
n > 1 an odd integer. Then p a prime of good reduction for E with N(p) prime
to n splits completely in Ln if and only if ap ≡ 2 mod n and bp ≡ 0 mod n.

For a discriminant ∆ let

Q∆(x, y) = x2 + δxy − ((∆− δ)/4)y2

be the principal form where δ = 0, 1 according to whether ∆ ≡ 0, 1 mod 4. For
p a prime of good reduction for E we get a representation

N(p) = Q∆p(x, y) (4)

with integral x, y upon using the change of variables

x = (ap − bpδp)/2 y = bp (5)

in (2). This representation is primitive if p is ordinary. Let L+
n be the extension

of K obtained by adjoining only the Weber functions of the n-th division points,
that is the x-coordinates unless j(E) = 0 or j(E) = 1728, in which case we
must first cube or square the coordinates, respectively. By Theorem 1 we can
determine which sufficiently large ordinary primes split completely in L+

n from
any such primitive representation.

Corollary 2. Let E be an elliptic curve defined over a number field K as above
and n ≥ 1 an integer. Then there is a constant C0 depending only on E and n
so that for every ordinary prime p of K with N(p) > C0 we have that p splits
completely in L+

n if and only if x ≡ ±1 mod n and y ≡ 0 mod n in any primitive
representation

N(p) = Q∆p(x, y).

If E has CM by the ring of integers in an imaginary quadratic field of dis-
criminant ∆ then the splitting completely condition in L+

n becomes simply

N(p) = Q∆(x, y)

with integers x ≡ ±1 mod n and y ≡ 0 mod n. Actually, suppose we take for
E the elliptic curve with lattice given by the ring of integers of an imaginary
quadratic field F of discriminant ∆ and take K = F (j(E)), the Hilbert class
field of F . It follows from Corollary 2 that a sufficiently large rational prime
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p splits in L+
n iff p = Q∆(x, y) with integers x ≡ ±1 mod n and y ≡ 0 mod n.

This is a well known result of CM theory.
Another simple consequence in the CM case, this time of Corollary 1, is that

the conditions

#Ep(k) ≡ 0 mod n2 and N(p) ≡ 1 mod n,

which are clearly necessary for p of good reduction to split completely in Ln,
are also sufficient, at least when n is odd.

Our main application is to describe the primes that split completely in cer-
tain non-solvable quintic extensions M/K. Suppose M is given by adjoining to
K a solution of a principal quintic over K:

f(x) = x5 + ax2 + bx + c = 0

and that the discriminant of f is D. Suppose further that the Galois group of
the normal closure L of M is S5 and that

√
5D ∈ K.

Theorem 2. Let M/K be a non-solvable quintic extension as above. There
exists an elliptic curve E defined over K so that a prime p of K that has good
reduction for E and is prime to 5 splits completely in M if and only if

bp ≡ 0 mod 5

where bp is associated to the elliptic curve E.

In general we have the following determination of the splitting type of p:

Splitting type of p in M

(
a2

p − 4N(p)
5

) (
N(p)

5

)
(1)(2)2 1 1
(1)(4) 1 −1
(1)2(3) −1 1
(1)3(2) −1 −1 if 5|ap

(2)(3) −1 −1 if 5 6 |ap

(5) 0 if 5 6 |bp

(1)5 0 if 5|bp

Concerning the determination of E from f , it is enough to find the j-invariant of
E. Explicit computations are provided below. We remark that it is also possible
to formulate a similar result for A5 extensions of K under otherwise identical
assumptions. Furthermore, by allowing the elliptic curve to be defined over a
quadratic or a biquadratic extension of K one can uniformize all non-solvable
quintic extensions.

It is also possible to explicitly uniformize certain degree 7 extensions whose
normal closure have Galois group simple of order 168 by using the seventh
division fields of elliptic curves (see [11] and the references cited there.) By
Theorem 1 one can similarly characterize the primes with a given splitting type
in such extensions.
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A global representation of the Frobenius

In this section we will prove Theorem 1 and its corollaries using an approach
that compares the action of the Frobenius on the prime-to p division points with
the action of the matrix (3) on Z2.

Let E be an elliptic curve defined over a number field K. Let p be a prime
ideal in OK with residue field k Ep, the reduction of E mod p (it is assumed that
E has good reduction at p). That p is unramified in the field Ln is well known,
see e.g. [14] VII.§4. Also note that there is nothing to prove when φp ∈ Z, so we
will assume throughout that this is not the case. The idea of the proof is that
modulo p the curve E can be replaced by a curve Ẽ with complex multiplication
so that the following diagram commutes:

E[n] red−−−−→ Ep[n] red←−−−− Ẽ[n]

FP

y φp

y φ̃p

y
E[n] red−−−−→ Ep[n] red←−−−− Ẽ[n]

(6)

where as usual [n] stands for the n-division points on the curves in the algebraic
closures of the appropriate fields.

We now explain this diagram in detail. To simplify matters we fix a Weier-
strass equation for E as in [14] III.§1. Let K, k be the algebraic closures of
K, k. To specify the horizontal maps red we choose an embedding of K into the
algebraic closure Kp of Kp, the completion of K at the valuation arising from p.
We call the subgroup of torsion points whose orders are relatively prime to p the
p′-torsion. Then the p′-torsion points on E(K) is mapped into the p′-torsion of
E(Kp) and this being defined over an unramified extension, reduction modulo
a prime P above p maps this latter group into the p′-torsion of E(k). Both of
these maps are isomorphisms on p′ torsion. This is the map red for reduction,
though as explained above it depends on many choices. Note that after these
choices are made there is a unique element Fp ∈ Gal(Kunram

p /Kp) that satisfies
Fp(t) ≡ t#k mod P, for all t ∈ Kunram

p .
We are interested in the action of the Frobenius automorphism φp ∈ Gal(k/k)

on the k-valued points. In terms of the Weierstrass equation for E, this action
on the coordinates is simply (x, y) 7→ (x#k, y#k). By abuse of notation we also
denote this action and the restriction of it to the n-division points by φp.

Now the commutativity of the left half of the diagram is merely a restatement
of the choices made above.

By Deuring’s lifting theorem ([4], [9] p.184), there exists an elliptic curve Ẽ
defined over Kp and an endomorphism φ̃p of Ẽ so that Ẽ reduces to Ep modulo
pOp and that φ̃p ∈ End(Ẽ) reduces to φp ∈ End(Ep). If E is super-singular φ̃p

will be defined over a ramified extension. Reduction still makes sense since φ̃p

is an endomorphism and not a Galois automorphism.

This shows the commutativity of the right half of diagram (6).
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To prove our theorem we need to determine the endomorphism ring S of
Ẽ. Recall that the ring Rp defined in the introduction is the centralizer of φp

in the endomorphism ring of Ep and is a quadratic order. We claim that S is
isomorphic to R. Since R ⊂ S, Deuring’s reduction theorem implies equality if
we can show that the conductor of R is prime to N(p), a fact that is trivial in
the ordinary case and follows from [18] in the super-singular case.

Let ∆p be the discriminant of Rp. By choosing a complex square root of ∆p

we identify Rp with a lattice in C. After this identification φp corresponds to
some complex number φ = (ap + bp

√
∆p)/2. Clearly the lattice R is preserved

by multiplication by φ and leads to the integral matrix (3), where we may choose
bp ≥ 0. Instead of R one could in fact use any lattice whose endomorphism ring
is R.

To finish the proof of Theorem 1, consider an embedding α of the algebraic
closure of Kp into C. It allows us to view Ẽ as an elliptic curve over the
complex numbers, which we denote Eα. Since Eα has complex multiplication
by R and Gal(C/Q) acts transitively on the set of elliptic curves with R as its
endomorphism ring, we may and will assume the j(Eα) = j(R).

By choosing a non-trivial holomorphic differential ω on Ẽα appropriately
the lattice of periods {

∫
γ

ω : γ ∈ H1(Ẽα, Z} = R. Then the period mapping
Π : Ẽα → C/R is a biholomorphic isomorphism of complex analytic manifolds.
The action of φ̃p on Ẽ defines an endomorphism of Ẽα and gives rise to a map
φ∗ on R. Since the Frobenius automorphism φp satisfies a quadratic equation

φ2
p − ap φp + N(p) = 0. (7)

φ∗ can be identified with multiplication by one of the complex roots of this
equation i.e. multiplication by φ : R → R (viewed as complex numbers). Get-
ting back to the n-division points we can again summarize the situation in the
following diagram:

Ẽp[n] α−−−−→ Ẽα[n] n×Π−−−−→ R/nR

φ̃p

y φα

y yφ∗

Ẽp[n] α−−−−→ Ẽα[n] n×Π−−−−→ R/nR

(8)

where n × Π is the period map followed by multiplication by n. This proves
Theorem 1.

Remark: If E is replaced by an Abelian variety V then p is still unramified [16]
and the left square of diagram (6) makes sense. If in addition V has ordinary
reduction at p then the right square in diagram (6) generalizes as shown by
Deligne [3] (and therefore the whole proof works). However the general case
leads to substantial difficulties [10].

Corollary 1 is an immediate consequence of Theorem 1.
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We now prove Corollary 2. Let E be an elliptic curve defined over a number
field K as above and n ≥ 1 an integer. Let p be a prime of ordinary reduction
for E. Given a primitive representation

pr = Q∆p(x, y)

we know that x and y are uniquely determined up to (proper or improper)
automorphs of Q∆p . If −∆p > 4 and x ≡ ±1 mod n and y ≡ 0 mod n then it
follows that

σp ≡
[

x + δy y
y(∆p − δp)/4 x

]
mod n (9)

and hence that p splits completely in L+
n . If j = j(E) is not 0 or 1728 then for

p with N(p) sufficiently large we have that −∆p > 4. To see this write j = α/β
for α, β ∈ OK. We know that j ≡ j(Rp) mod p. If j(Rp) = 0 or 1728 then
assuming that j − j(Rp) 6= 0 we have

N(p) ≤ max(|N(α)|, |N(α− 1728β)|).

In case j = 0 or j = 1728 the altered definition of L+
n leads again to the result.

Finally we prove the consequence of Corollary 1 mentioned below Corollary
2 above that, in the CM case, a prime of good reduction p splits completely in
Ln if ap ≡ N(p) + 1 mod n2 and N(p) ≡ 1 mod n, provided n is odd. Since
these conditions immediately imply that ap ≡ 2 mod n, by Corollary 1 we only
must show that n | bp. By our assumption

a2
p ≡ (N(p)− 1)2 + 4N(p) ≡ 4N(p) mod n2

we get, using
4N(p) = a2

p − ∆p b2
p,

that
n2 | ∆pb

2
p.

For a CM curve with fundamental ∆ the only possible prime dividing the square
part of ∆p is 2. In fact, ∆p = ∆ for ordinary p and for super-singular p we
have ∆p = −p or ∆p = −4p, where N(p) = pr. Since n is odd this implies that
n | bp.

Quintics

In the section we prove Theorem 2 and justify the general splitting criteria given
after it as well as the example given in the introduction. Let M be given by
adjoining to K a root of a principal quintic

f(x) = x5 + ax2 + bx + c = 0
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defined over K. If the discriminant of f is 5 times a square then, by means of a
Tschirnhausen transformation ([5] p.218.) we may assume that M is determined
by a Brioschi quintic

ft(x) = x5 − 10tx3 + 45t2x− t2

for some t ∈ K with t 6= 0, 1
1728 . It was shown by Kiepert [6] already in 1879

(see [7] for an exposition) that M is contained in L+
5 for any elliptic curve E

over K with j-invariant 1728 − t−1. Recall that L+
5 is in this case obtained

by adjoining to K the x-coordinates of the 5 division points. One can take for
instance the curve Et given by

Et : y2 + xy = x3 + 36tx + t. (10)

If the splitting field of f over K is an S5 extension then it must be the fixed field
of the subgroup of scalars of G since PGL2(F5) ' S5. Theorem 2 now follows
easily from Theorem 1.

A calculation of conjugacy classes based on the identification of S5 with
PGL2(F5) leads to the determination of the splitting type of a prime p of good
reduction for Et that is prime to 5. Recall that A ∈ GL2(F5) is called regular
if it has different eigenvalues. Clearly A is regular if the discriminant of the
characteristic equation tr(A)2−4 det(A) is non-zero. Given such A its conjugacy
class is determined by its trace and determinant. It is clear that the values of
the following Legendre symbols

σ =
(

det(A)
5

)
and ρ =

(
tr(A)2 − 4 det(A)

5

)
are determined by the conjugacy class of A in PGL2(F5). Now in case the
characteristic polynomial of A splits, that is ρ = 1, the matrix A is conjugate
to a diagonal matrix in GL2(F5) and so the value of σ already determines the
cycle type of such matrices. When ρ = −1 one must take into account whether
tr(A) ≡ 0 or 6≡ 0 mod 5. For A non-regular tr(A)2 − 4 det(A) = 0 and one
needs to know if A is semi-simple or unipotent. This information cannot be
extracted from the trace and determinant alone, but it is determined by the
value of bp. All that remains to be done is to identify each conjugacy classes
with its cycle type.

The example in the introduction is obtained by taking K = Q and t = −32

2852 .
Here we observe that since E has four 2-torsion points over Q both ap and bp

will be even for p with good reduction. Thus the representation

4p = a2
p − ∆p b2

p

yields
p = x2 − ∆p y2

and the condition for splitting completely is that y ≡ 0 mod 5, since x and y
are determined uniquely up to sign.
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Some computational issues

In this section we discuss some of the computational issues that arise when
considering examples.

First, given a principal quintic (slightly modified from above)

f(x) = x5 + 5ax2 + 5bx + c = 0 (11)

defined over K with discriminant D such that
√

5D ∈ K we must determine t
so that the Brioschi quintic

ft(x) = x5 − 10tx3 + 45t2x− t2. (12)

determines the same extension. This is done using a Tschirnhausen transfor-
mation and is described in detail in [7], p 103. (see also [5] p.218.) Here we will
simply record the result in the case a 6= 0.

We must find t, λ and µ in the map

x 7→ λ + µx

(x2/t)− 3
(13)

in order to transform the general principal quintic (11) to the Brioschi quintic
(12). An analysis using invariant polynomials for the icosahedral group acting
on the Riemann sphere leads eventually to the quadratic equation for λ given
by

(a4 + abc− b3)λ2 − (11a3 − ac2 + 2b2c)λ + 64a2b2 − 27a3c− bc2 = 0.

The discriminant of this quadratic is

5−5a2D

and so λ ∈ K. Choose either solution and let

j =
(aλ2 − 3bλ− 3c)3

a2(λac− λb2 − bc)
.

Then, provided j 6= 0, 1728 we can take

t = 1/(1728− j)

in (12) and choose for the elliptic curve any curve with this j invariant, say

Et : y2 + xy = x3 + 36tx + t

as in (10). Also, one determines µ in (13) to be given by

µ =
ja2 − 8λ3a− 72λ2b− 72λc

λ2a + λb + c
.
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Note that the discriminant of ft is

Dt = 55t8(1728t− 1)2

while that of Et is
−t(1728t− 1)2.

Another issue is to compute the invariants ∆p and bp in the rational case. An
important study of ∆p was made by Schoof in [12]. The most straightforward
way to determine bp and to find the order R that appears in Deuring’s theorem
is to check all the possible singular invariants until we find one that is congruent
to the given j-value modulo p. (Note that the discriminant of R must divide
a2

p − 4p.) We assume that our input is an elliptic curve E, given in Weierstrass
equation, and p is a prime number that does not divide the discriminant of E.
After computing ap we find ∆p for an ordinary curve as follows; we first compute
the square-free part D of a2

p − 4p and then create a vector whose values are all
possible discriminants

∆ = b2D|(a2
p − 4p).

For a possible conductor ∆, we find the class group C(∆) of the proper ideal
classes (using quadratic forms) and compute the integer

X∆ =
∏

Λ∈C(∆)

(j(E)− j(Λ)).

Note that the canonical lift Ẽ is distinguished by the fact that its endomorphism
ring is R and that j(E) ≡ j(Ẽ) mod P for some prime P dividing p. Therefore
for any complex embedding α : Qp → C,

α(j(Ẽ)) ∈ {j(C/Λ) : Λ ∈ C∆p},

where ∆p is the actual discriminant of R. Also note that if Λ′ ∈ C∆′ for ∆′ 6= ∆p,
then the corresponding elliptic curve reduces to a curve whose endomorphism
ring has discriminant ∆′ for any place above p. Therefore ∆p is uniquely char-
acterized by the fact that

X∆p
≡ 0 mod p.

Occasionally the computation of X∆ involves complex numbers of rather
large size. To make the algorithm efficient, one needs to determine the needed
precision in advance. Assume that the lattices are given in the form Z + Zτi,
with τi in the upper half plane. Then the number of significant digits one must
use is approximately ∑

τi

log(j(E)) + 2πIm(τi)
log(10)

.

It follows from Lemma 2.2 of [12] that the required precision is approximately
of size

√
p.
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Below we present various tables giving information about the invariants of
the family of elliptic curves

Et : y2 + xy = x3 + 36tx + t

associated as above to the quintic

ft(x) = x5 − 10tx3 + 45t2x− t2.

We made use of pari-gp in these computations.

t=1 t=2 t=3 t=4
p ∆p ap bp ∆p ap bp ∆p ap bp ∆p ap bp

2 -7 -1 1 - - - -7 -1 1 - - -
3 -8 -2 1 -11 1 1 - - - -8 -2 1
5 -11 3 1 - - - -16 2 1 -19 -1 1
7 -24 2 1 -12 -4 1 -19 -3 1 -24 -2 1
11 - - - -43 1 1 -28 4 1 -40 -2 1
13 -12 2 2 -13 0 1 -27 5 1 -51 1 1
17 -8 -6 2 -59 -3 1 -52 4 1 -43 -5 1
19 -60 -4 1 -67 3 1 -15 4 2 -72 2 1
23 -76 -4 1 -56 -6 1 -56 6 1 -56 -6 1
29 -28 -2 2 -29 0 1 -100 -4 1 -35 -9 1
31 -24 10 1 -24 10 1 -31 0 1 -88 -6 1
37 -123 5 1 -84 -8 1 -139 3 1 -147 1 1
41 -8 -6 4 -139 -5 1 -128 6 1 -83 -9 1
43 -156 4 1 -39 4 2 -7 12 2 -72 -10 1
47 -172 -4 1 -152 6 1 -184 2 1 -152 6 1
53 -211 -1 1 -176 -6 1 -176 6 1 -52 -2 2
59 -232 2 1 -211 -5 1 -172 8 1 -40 14 1
61 -75 13 1 -61 0 1 -36 -10 2 -36 -10 2
67 -232 -6 1 -147 11 1 -187 9 1 -264 -2 1
71 -140 12 1 -248 -6 1 - - - -248 6 1
73 -123 -13 1 -123 -13 1 - - - -291 -1 1
79 -300 -4 1 -300 4 1 -291 -5 1 -252 8 1
83 -83 0 1 -331 1 1 -136 -14 1 -316 4 1
89 -187 -13 1 -355 -1 1 -89 0 1 -80 -6 2
97 -88 -6 2 -43 -1 3 -363 -5 1 -96 -2 2

The invariants for the elliptic curves Et for the first 25 primes (− indicates
that the curve has bad reduction.)
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t=1 t=2 t=3 t=4
p ∆p ap bp ∆p ap bp ∆p ap bp ∆p ap bp

541 -492 14 2 -1680 -22 1 -1539 25 1 -2115 7 1
547 -2088 -10 1 -1827 19 1 -351 -28 2 -1992 -14 1
557 -1939 -17 1 -2224 2 1 -464 42 1 -532 10 2
563 -563 0 1 -419 24 2 -2188 -8 1 -1676 24 1
569 -1051 35 1 -2107 13 1 -1792 -22 1 -1835 21 1
571 -2184 -10 1 -2275 -3 1 -375 -28 2 -168 46 1
577 -528 14 2 -576 2 2 -2139 13 1 -496 18 2
587 -2204 -12 1 -551 12 2 -1324 32 1 -584 42 1
593 -1283 33 1 -2203 13 1 -1076 36 1 -152 -42 2
599 -2392 -2 1 -2296 10 1 -2140 -16 1 -1240 -34 1
601 -2115 17 1 -2379 -5 1 -376 30 2 -227 19 3
607 -984 38 1 -2412 4 1 -607 0 1 -984 -38 1
613 -147 10 4 -1876 24 1 -1723 -27 1 -324 -34 2
617 -2107 19 1 -88 -46 2 -164 48 1 -88 46 2
619 -1032 -38 1 -955 39 1 -47 -28 6 -1800 -26 1
631 -924 40 1 -1228 -36 1 -2235 -17 1 -1368 34 1
641 -2483 -9 1 -632 -6 2 -2420 12 1 -560 -18 2
643 -1416 34 1 -2563 -3 1 -1611 -31 1 -2536 -6 1
647 -2264 18 1 -2444 -12 1 -284 -48 1 -2188 -20 1
653 -2603 -3 1 -2036 -24 1 -2608 -2 1 -652 -2 2
659 -2440 14 1 -623 12 2 -2312 -18 1 -1736 -30 1
661 -2619 5 1 -2640 2 1 -1419 -35 1 -1915 -27 1
673 -39 -14 8 -1851 -29 1 -2571 -11 1 -2643 -7 1
677 -2179 23 1 -1808 30 1 -2224 22 1 -2267 -21 1
683 -2056 -26 1 -2563 -13 1 -428 -48 1 -2156 24 1
691 -300 8 3 - - - -495 -28 2 -2620 12 1

The invariants for the elliptic curves Et for the primes from p100 = 541 to
p125 = 691.
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t=1 t=2 t=3 t=4
p ∆p ap bp ∆p ap bp ∆p ap bp ∆p ap bp

7927 -236 172 3 -14284 -132 1 -5991 88 2 -31608 -10 1
7933 -28011 61 1 -16848 -122 1 -12411 -139 1 -116 166 6
7937 -7888 14 2 -18979 113 1 -28148 60 1 -31387 19 1
7949 -22771 95 1 -17872 -118 1 -6196 -160 1 -31627 -13 1
7951 -23340 92 1 -14380 132 1 -26179 75 1 -29868 44 1
7963 -31276 -24 1 -3063 -140 2 -31491 -19 1 -16476 -124 1
7993 -3539 -11 3 -1888 42 4 -876 134 4 -23323 -93 1
8009 -5408 -102 2 -27811 -65 1 -19040 114 1 -28315 61 1
8011 -21228 -104 1 -17403 -121 1 -8019 155 1 -21640 102 1
8017 -16443 -125 1 -6648 -74 2 -24843 -85 1 -31779 -17 1
8039 -7192 158 1 -28556 60 1 -31672 22 1 -22940 -96 1
8053 -6964 -66 2 -32176 6 1 -25651 81 1 -22011 101 1
8059 -30636 -40 1 -24315 89 1 -7995 16 2 -31080 -34 1
8069 -32267 -3 1 -32020 16 1 -9776 150 1 -1807 58 4
8081 -22123 -101 1 -30115 47 1 -32128 14 1 -1520 162 2
8087 -31772 24 1 -32344 2 1 -21112 106 1 -31324 -32 1
8089 -29331 55 1 -8947 -153 1 -7360 54 2 -896 -10 6
8093 -31147 35 1 -32228 12 1 -20708 -108 1 -32363 3 1
8101 -275 -173 3 -11668 -144 1 -30003 49 1 -3612 134 2
8111 -30680 42 1 -1240 -38 5 -11708 -144 1 -31148 36 1
8117 -10859 147 1 -31684 -28 1 -27284 72 1 -7948 -26 2
8123 -26716 -76 1 -10291 -149 1 -32488 2 1 -32236 16 1
8147 -32104 -22 1 -26659 -77 1 -30824 42 1 -24844 -88 1
8161 -32 -62 30 -9235 -153 1 -29163 -59 1 -984 130 4
8167 -2236 -112 3 -20124 -112 1 -30267 49 1 -32632 -6 1

The invariants for the elliptic curves Et for the primes from p1001 = 7927 to
p1025 = 8167.

t 1 2 3 4 5 6 7 8 9 10 11
∆23 -76 -56 -56 -56 -83 -56 -91 - -28 -23 -19
a23 -4 -6 6 -6 3 -6 -1 - -8 0 4
b23 1 1 1 1 1 1 1 - 1 1 2

t 12 13 14 15 16 17 18 19 20 21 22
∆23 -88 -76 -83 -7 -76 -11 -88 -43 -67 -83 -91
a23 2 4 3 -8 4 -9 2 -7 5 -3 1
b23 1 1 1 2 1 1 1 1 1 1 1

For the prime 23, the invariants of the curve Et, (at t = 8, the curve has bad
reduction)

14



t bp = 1 2 3 4 5 6 7 8 9 10 11 12
1 77 10 6 3 0 1 0 2 0 0 0 1
2 74 15 5 1 1 0 1 2 0 0 0 0
3 80 15 1 2 0 1 1 0 0 0 0 0
4 78 14 2 4 0 1 0 0 0 0 0 1
5 82 11 5 1 1 0 0 0 0 0 0 0
6 78 14 5 2 0 1 0 0 0 0 0 0
7 81 12 4 2 1 0 0 0 0 0 0 0
8 76 13 4 5 0 0 0 1 0 0 0 0
9 79 16 2 2 1 0 0 0 0 0 0 0
10 88 6 2 2 0 0 1 0 0 0 0 1
11 75 15 3 5 1 0 0 1 0 0 0 0
12 75 16 6 1 1 0 0 1 0 0 0 0
13 73 15 6 1 2 1 0 1 0 0 0 0
14 79 11 7 2 1 0 0 0 0 0 0 0
15 80 12 3 0 3 1 0 0 0 0 0 0
16 79 12 1 4 0 3 0 0 0 0 0 0
17 84 9 1 2 2 1 0 1 0 0 0 0
18 83 12 3 0 2 0 0 0 0 0 0 0
19 77 16 3 3 1 0 0 0 0 0 0 0
20 81 15 2 1 0 0 0 0 1 0 0 0
21 81 17 2 0 0 0 0 0 0 0 0 0
22 77 17 6 0 0 0 0 0 0 0 0 0
23 73 18 4 3 0 0 0 1 0 0 0 0
24 84 8 3 2 3 0 0 0 0 0 0 0
25 76 10 4 6 1 0 1 2 0 0 0 0

For a given t, the table shows the number of primes in the range
p101 = 547 ≤ p ≤ p200 = 1223, the for which the invariant bp of Et is 1, 2...,
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p bp = 1 2 3 4 5 6 7 8 9 10 11 12
233 187 34 0 8 0 0 1 1 0 0 0 0
239 201 31 0 0 3 0 1 0 0 1 0 0
241 175 33 16 6 3 3 0 3 0 0 0 0
251 206 38 0 0 4 0 0 0 0 0 1 0
257 206 39 0 8 0 0 0 2 0 0 0 0
263 223 37 0 0 0 0 1 0 0 0 0 0
269 209 43 0 11 4 0 0 0 0 0 0 0
271 208 35 18 0 4 4 0 0 0 0 0 0
277 207 35 19 10 0 2 1 0 0 0 0 1
281 219 43 0 9 3 0 2 2 0 1 0 0
283 216 42 19 0 0 3 0 0 1 0 0 0
293 235 44 0 12 0 0 0 0 0 0 0 0
307 235 45 20 0 0 4 0 0 1 0 0 0
311 263 41 0 0 4 0 0 0 0 1 0 0
313 235 40 20 9 0 3 0 2 1 0 0 1
317 257 43 0 13 0 0 2 0 0 0 0 0
331 247 49 22 0 5 4 1 0 1 0 0 0
337 253 42 22 10 0 4 1 2 0 0 0 1
347 288 54 0 0 0 0 1 0 0 0 0 0
349 255 45 23 14 4 4 0 0 1 1 0 0
353 285 51 0 12 0 0 0 2 0 0 1 0
359 300 49 0 0 6 0 1 0 0 0 0 0
367 283 51 25 0 0 5 0 0 0 0 1 0
373 278 48 25 14 0 3 1 0 1 0 0 1
379 284 53 25 0 4 5 1 0 1 2 1 0

Given p, the table shows the number of t in the range 1 ≤ t ≤ p− 1 for which
the invariant bp of Et takes the value 1, 2,...
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