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1. Introduction

For this paper we assume familiarity with the basics of the theory of modular forms as may
be found, for instance, in Serre’s classic introduction [12]. A weakly holomorphic modular
form of weight k ∈ 2Z for Γ = PSL2(Z) is a holomorphic function f on the upper half-plane
that satisfies

f(aτ+b
cτ+d

) = (cτ + d)kf(τ) for all ( a b
c d ) ∈ Γ

and that has a q-expansion of the form f(τ) =
∑

n≥n0
a(n)qn, where q = e2πiτ and n0 =

ord∞(f). Such an f is holomorphic if n0 ≥ 0 and a cusp form if n0 ≥ 1. Let Mk denote the
vector space of all weakly holomorphic modular forms of weight k. Any nonzero f ∈ Mk

satisfies the valence formula

(1) 1
12

k = ord∞(f) + 1
2
ordi(f) + 1

3
ordρ(f) +

∑

τ∈F\{i,ρ}
ordτ (f) (ρ = −1

2
+ i

√
3

2
),

where F is the usual fundamental domain for Γ. Write k = 12`+k′ with uniquely determined
` ∈ Z and k′ ∈ {0, 4, 6, 8, 10, 14}. An important consequence of (1) is that

(2) ord∞(f) ≤ `

for a nonzero f ∈Mk.
For each k ≥ 4 we have a holomorphic form in Mk given by the Eisenstein series

(3) Ek(τ) = 1 + Ak

∑
n≥1

σk−1(n)qn, where Ak = − 2k
Bk

,

with Bk the Bernoulli number and σk−1(n) =
∑

d|n dk−1. These give rise to the weight 12
cusp form

∆(τ) = 1
1728

(E4(τ)3 − E6(τ)2) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn

and the weight 0 modular function

(4) j(τ) =
E4(τ)3

∆(τ)
= q−1 + 744 +

∑
n≥1

c(n)qn,

known simply as the j-function.
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In this paper we are interested in various properties of a certain natural basis forMk defined
as follows. For each integer m ≥ −`, there exists a unique fk,m ∈ Mk with q-expansion of
the form

(5) fk,m(τ) = q−m + O(q`+1).

It can be constructed explicitly in terms of ∆, j and Ek′ , where we set E0 = 1. In fact,

(6) fk,m = ∆`Ek′Fk,D(j),

where Fk,D(x) is a monic polynomial in x of degree D = ` + m with integer coefficients. The
uniqueness of fk,m is a consequence of (2). These fk,m with m ≥ −` form a basis for Mk;
any modular form f ∈Mk with Fourier coefficients a(m) can be written

(7) f =
∑

n0≤n≤`

a(n)fk,−n,

again by (2). When ` > 0, the set {fk,−`, fk,−`+1, . . . , fk,−1} is a basis for the subspace of
cusp forms, which thus has dimension `. For

(8) k = 4, 6, 8, 10, 14 we have Ak = 240,−504, 480,−264,−24,

respectively. Therefore Ek′ , ∆, j and Fk,m all have integer coefficients and it follows that the
coefficients ak(m,n) defined by

fk,m(τ) = q−m +
∑

n

ak(m,n) qn

are integral.
The functions fk,−` = ∆`Ek′ play a special role, and we will denote them by fk and their

Fourier coefficients by ak(n). The fk,m are also familiar when k = 0, where they are central
in the theory of singular moduli (see [14]); the first few are given by

f0,0(τ) = 1
f0,1(τ) = j(τ)− 744 = q−1 + 196884 q + 21493760 q2 + · · · ,
f0,2(τ) = j(τ)2 − 1488j(τ) + 159768 = q−2 + 42987520 q + 40491909396 q2 + · · · .

More generally, the fk,m have been studied extensively when k ∈ {0, 4, 6, 8, 10, 14} and when
m = 0, where fk,0(τ) = 1 + O(q`+1). For example, in all of these cases, the zeros of fk,m in
F are known to lie on the unit circle; the proofs vary depending on the case. One aim of
this paper is to provide a general result on the location of the zeros that holds for all k and
to give a unified method of proof. This is given as Theorem 1 below. Its proof is based on
the following generating function for the fk,m (Theorem 2), to which a simple type of circle
method is applied:

∑

m≥−`

fk,m(z)qm =
fk(z)f2−k(τ)

j(τ)− j(z)
.

Another consequence of the generating function is the following duality between the coeffi-
cients in weights k and 2− k:

ak(m,n) = −a2−k(n,m).

This duality, well known when ` = 0, is illustrated by the weights k = 12

f12,−1(τ) = q −24q2 +252q3 −1472q4 + · · · ,
f12,0(τ) = 1 +196560q2 +16773120q3 +398034000q4 + · · · ,
f12,1(τ) = q−1 +47709536q2 +39862705122q3 +7552626810624q4 + · · · ,
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and 2− k = −10

f−10,2(τ) = q−2 +24q−1 −196560 −47709536q + · · · ,
f−10,3(τ) = q−3 −252q−1 −16773120 −39862705122q + · · · ,
f−10,4(τ) = q−4 +1472q−1 −398034000 −7552626810624q + · · · .

Note that f12,−1 = f12 = ∆.
It follows from a paper of Siegel [13] that if k > 0, then the coefficient ak(0, ` + 1) is

divisible by every prime p with (p− 1)|k. Thus, for example, when k = 12 we have

a12(0, 2) = 196560 = 24 · 33 · 5 · 7 · 13.

To see this, by (7) the Fourier coefficients a(n) of any f ∈Mk must satisfy

(9) a(` + 1) =
∑

n≤`

ak(−n, ` + 1)a(n).

Applying this to Ek from (3) for k ≥ 4 gives the formula

ak(0, ` + 1)
Bk

2k
=

∑

0<n≤`

ak(−n, ` + 1)σk−1(n)− σk−1(` + 1).

It follows that ak(0, ` + 1) is divisible by the denominator of Bk

2k
, hence the result is a conse-

quence of the Staudt-Clausen theorem. Siegel argued using the dual form of (9), namely

(10)
∑

n≤`+1

a2−k(−n)a(n) = 0.

Siegel’s observation suggests that it might be interesting to examine the divisors of ak(m,n)
in other cases. Consider, for example, the following factorizations when k = 14 and n = 1:

a14(1, 3) = −2 · 316 · 52 · 19,

a14(1, 7) = −34 · 52 · 714 · 2129,

a14(1, 15) = −317 · 514 · 7 · 25679 · 26879,

a14(1, 32) = −272 · 52 · 34610493144432841.

In each case, the coefficient of qn is divisible by high powers of the prime factors of n. As a
special case of Theorem 3, we will show that n13| a14(1, n) holds for all n ≥ 1. Since

f14,1 = E14(j − 720),

this implies the following recursive congruence for the coefficients c(n) of the j-function:

c(n) ≡ 242σ13(n) + 24 σ13(n + 1) + 24
n−1∑
i=1

σ13(n− i)c(i) (mod n13),

which holds for all n ≥ 1.
Finally, we mention that Lehmer’s famous conjecture that τ(n) 6= 0 for n ≥ 1 is equivalent

to the non-vanishing of the “leading” term in the nth basis function in weight −10 since by
duality

f−10,n(τ) = q−n − τ(n)q−1 + · · · .

More generally, we can write

fk,n(τ) = q−n − a2−k(n)q`+1 + · · · ,

where a2−k(n) is the nth coefficient of f2−k = ∆−`−1E14−k′ . It is easily checked that a2−k(n) 6= 0
for n ≥ −` − 1 when k ∈ {−12,−8,−6,−4,−2} or when k ≥ 4 and k ≡ 2 (mod 4). Siegel
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[13, Satz 2] showed that a2−k(0) 6= 0 when k > 0. It seems to be an interesting problem to
find other such non-vanishing results.

2. Statement of results

The following result concerning the location of the zeros of the fk,m is proved in Section 5.

Theorem 1. If m ≥ |`| − `, then all of the zeros of fk,m in F lie on the unit circle.

The condition m ≥ 0 of Theorem 1 excludes cusp forms; in fact, the conclusion of Theorem
1 does not hold in general without some restriction on m. The form f132,−9 of weight 132 is
the first positive weight example where it fails, and the form f−256,23 of weight −256 is the
first example of negative weight where it fails. Of course, it always holds for fk = fk,−`. A
list of weights where each basis function has all of its zeros in F on the unit circle is given
at the end of Section 6.

Theorem 1 is related in various ways to previously known results. When k ∈ {4, 6, 8, 10, 14},
a comparison of q-expansions shows that for m ≥ 0

(11) fk,m = Pk,−m,

where Pk,m is the convergent Poincaré series

(12) Pk,m(τ) = 1
2

∑

(c,d)=1

e(m aτ+b
cτ+d

)(cτ + d)−k,

defined for any k ≥ 4 and m ∈ Z. Here the sum is over all coprime pairs (c, d), where for each
pair ( a b

c d ) ∈ SL2(Z) is arbitrarily chosen (see [10]). As a special case of a more general result,
R. Rankin [9] showed in 1982 that for m ≥ 0 and even k ≥ 4, all of the zeros of Pk,−m in F
lie on the unit circle. When m = 0, so that Pk, 0 = Ek, this result had been obtained already
in 1970 by F. Rankin and Swinnerton-Dyer [8]. They introduced the idea of approximating
(a multiple of) the modular form by an elementary function having the required number of
zeros on the arc {eiθ : θ ∈ (π

2
, 2π

3
)}. Some variation on this idea appears in the known proofs

of almost all such results. For Poincaré series, this approximation makes use of the definition
(12). Asai, Kaneko, and Ninomiya [1] extended Rankin’s result by proving Theorem 1 for
the case k = 0. As they mention, their proof can be modified to cover all cases when ` = 0.
In place of Poincaré series for the approximation, they use the fact that when ` = 0

(13) fk,1 |Tm = mk−1fk,m,

where Tm is the Hecke operator and m ≥ 1. Finally, when m = 0, Theorem 1 was proved by
Getz [5], using a generalization of the method of [8]. As can be seen from the proof, this is
the most delicate case of Theorem 1.

In order to prove Theorem 1 in general, we will avoid the use of Poincaré series and
Hecke operators, since the relations (11) and (13) need not hold when ` 6= 0. Instead, we
derive an integral formula for fk,m, for which approximation by residues leads to Theorem
1. Computing the first few terms of the approximation via a circle method-type argument is
enough to prove the theorem. The integral formula, given in Lemma 2, is equivalent to the
following generating function for fk,m.

Theorem 2. For any even integer k we have
∑

m≥−`

fk,m(z)qm =
fk(z)f2−k(τ)

j(τ)− j(z)
,

where fk = ∆`Ek′ with k = 12` + k′.
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For the case ` = 0, this was given in [1]. In fact, such formulas were first discovered by
Faber [3, 4] as early as 1903 for quite general conformal maps, and Fk,D(x) from (6) is a
generalized Faber polynomial. For completeness, we will give the short proof of Theorem
2 in Section 4. A readily proved corollary is the following duality between coefficients for
weights k and 2− k.

Corollary 1. Let k be an even integer. For all integers m,n the equality

ak(m,n) = −a2−k(n,m)

holds for the Fourier coefficients of the modular forms fk,m and f2−k,n.

This also follows from the fact that fk,mf2−k,n is the derivative of a polynomial in j, hence
has vanishing zeroth Fourier coefficient. A variant of this idea was used in [13] to obtain (10).
Similar duality theorems hold for modular forms of half integral weight (see [14] and [2]).

The divisibility result mentioned at the end of the Introduction is a special case of the
following.

Theorem 3. Let k ∈ {4, 6, 8, 10, 14}. If (m,n) = 1, then nk−1| ak(m,n).

This is proved next and follows from basic properties of the Hecke operators. In the case
m = 1 this easily implies the following congruences for the coefficients c(n) of the j-function.

Corollary 2. For each k ∈ {4, 6, 8, 10, 14} and for all n ≥ 1, we have the congruence

c(n) ≡ A2
kσk−1(n)− Akσk−1(n + 1)−

n−1∑
i=1

Akσk−1(n− i)c(i) (mod nk−1),

where the value of Ak is given in (8).

3. Proof of Theorem 3

Theorem 3 is an immediate consequence of the following result (c.f. [7]). (Note that
ak(m,n) = 0 if m or n is not an integer.)

Lemma 1. Let p be a prime and k ∈ {4, 6, 8, 10, 14}. Then

ak(m,npr) = pr(k−1)
(
ak(mpr, n)− ak

(
mpr−1, n

p

))
+ ak

(
m
p
, npr−1

)
.

For positive integers N , the Hecke operator TN of weight k sends modular forms in Mk to
modular forms inMk. For k ≥ 2, we denote the coefficient of qn in fk,m(τ)|TN by ak(m, n,N),
so that

fk,m(τ)|TN =
∑

ak(m,n, N)qn.

Standard formulas for the action of the Hecke operator (for example, in VII.5.3 of [12]) give
that for a prime p,

(14) ak(m,n, p) = ak(m,np) + pk−1ak(m, n
p
) if k ≥ 2.

Suppose now that k ∈ {4, 6, 8, 10, 14} and that m ≥ 1, so that fk,m(τ) = q−m +O(q). Since
an equation similar to (14) is valid for n < 0, we calculate that the q-expansion of fk,m(τ)|Tp

begins

fk,m(τ)|Tp = pk−1q−mp + q−m/p + O(q),
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where the second term is omitted if p - m. Because there are no cusp forms in Mk, the
non-positive powers of q completely determine the decomposition of fk,m(τ)|Tp into basis
elements fk,m(τ), and we obtain the formula

fk,m(τ)|Tp = pk−1fk,mp + fk,m/p,

where fk,α = 0 if α is not an integer. The coefficients of qn on each side give

(15) ak(m,n, p) = pk−1ak(mp, n) + ak

(
m
p
, n

)
.

Combining equations (14) and (15), then, we obtain

(16) ak(m,np) = pk−1
(
ak(mp, n)− ak

(
m, n

p

))
+ ak

(
m
p
, n

)
.

These observations are enough to prove the lemma.
To see this, let r be a positive integer. Note that for 1 ≤ i ≤ r − 1, replacing m with pim

and n with pr−i−1n in (16) gives

(17) pi(k−1)
(
ak(mpi, npr−i)− ak(mpi−1, npr−i−1)

)

= p(i+1)(k−1)(ak(mpi+1, npr−i−1)− ak(mpi, npr−i−2)).

We now replace n with npr−1 in equation (16) to obtain

ak(m, npr) = pk−1(ak(mp, npr−1)− ak(m,npr−2)) + ak

(
m
p
, npr−1

)
,

and use (17) a total of (r − 1) times to obtain

ak(m,npr) = pr(k−1)
(
ak(mpr, n)− ak(mpr−1, n

p
)
)

+ ak

(
m
p
, npr−1

)
,

thus proving Lemma 1.
We remark that Lemma 1 may be generalized to weights with ` > 0 without much difficulty,

although the presence of cusp forms in these spaces adds additional terms.

4. Proof of Theorem 2

By Cauchy’s integral formula it suffices to prove the following.

Lemma 2. We have

fk,m(z) = 1
2πi

∮

C

∆`(z)Ek′(z)E14−k′(τ)

∆1+`(τ)(j(τ)− j(z))
q−m−1 dq,

for C a (counterclockwise) circle centered at 0 in the q-plane with a sufficiently small radius.

First observe that by (5) and (6)

∆`Ek′Fk,D(j) = q−m + O(q`+1).

Thus by Cauchy’s integral formula we have, for C ′ a (counterclockwise) circle centered at 0
in the j-plane with a sufficiently large radius, that

Fk,D(ζ) = 1
2πi

∮

C′

Fk,D(j)

j − ζ
dj = 1

2πi

∮

C′

q−m

∆(j)`Ek′(j)(j − ζ)
dj.

Changing variables j 7→ q and using the well-known identity

q
dj

dq
=
−E14

∆
,

we see that

Fk,D(ζ) = 1
2πi

∮

C

E14−k′(τ) q−m−1

∆(τ)1+`(j(τ)− ζ)
dq.
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Replacing ζ with j(z), multiplying by ∆(z)`Ek′(z) and applying (6), we finish the proof of
Lemma 2 and hence Theorem 2.

5. Proof of Theorem 1

The zeros of Ek′ in F occur in {i, ρ} with easily determined multiplicities, and ∆ has no
zeros in F . Thus, by (6) and the valence formula (1), to prove Theorem 1 it is enough to
show that when D = `+m ≥ | `|, the function fk,m has D zeros on the arc {eiθ : θ ∈ (π

2
, 2π

3
)}.

In fact, we will see that these zeros are simple. An easy argument [5, Prop. 2.1] shows that
for any weakly holomorphic modular form f of weight k with real coefficients, the quantity
eikθ/2f(eiθ) is real for θ ∈ (

π
2
, 2π

3

)
. We will show that for these θ, the following lemma holds.

Lemma 3. For all θ ∈ (
π
2
, 2π

3

)
,

∣∣eikθ/2e−2πm sin θfk,m(eiθ)− 2 cos
(

kθ
2
− 2πm cos θ

)∣∣ < 1.985.

This inequality is enough to prove the theorem. To see this, note that as θ increases from
π/2 to 2π/3, the quantity

(18) kθ
2
− 2πm cos θ

increases from π(3` + k′/4) to π(3` + k′/3 + D), hitting D + 1 distinct consecutive integer
multiples of π (this is independent of the choice of k′). A short computation shows that if
D ≥ |`|, then the quantity given in (18) is strictly increasing on this interval. Thus, there
are exactly D + 1 values of θ in the interval

[
π
2
, 2π

3

]
where the function

2 cos
(

kθ
2
− 2πm cos θ

)

has absolute value 2, alternating between +2 and −2 as θ increases. In view of Lemma 3 and
the intermediate value theorem, then, the real-valued function eikθ/2e−2πm sin θfk,m(eiθ) must
have at least D distinct zeros as θ moves through the interval

(
π
2
, 2π

3

)
. This accounts for all

D nontrivial zeros of fk,m.
It remains to prove Lemma 3. Changing variables q 7→ τ in the formula of Lemma 2 and

deforming the resulting contour by Cauchy’s theorem gives that for A > 1,

fk,m(z) =

∫ 1
2
+iA

− 1
2
+iA

∆(z)`

∆(τ)1+`

Ek′(z)E14−k′(τ)

j(τ)− j(z)
e−2πimτdτ.

For brevity, we write

G(τ, z) =
∆(z)`

∆(τ)1+`

Ek′(z)E14−k′(τ)

j(τ)− j(z)
e−2πimτ ,

so that

fk,m(z) =

∫ 1
2
+iA

− 1
2
+iA

G(τ, z)dτ.

We now assume that z = eiθ for some θ ∈ (π
2
, 2π

3
), and move the contour of integration

downward to a height A′. As we do so, each pole τ0 of G(τ, z) in the region defined by

−1
2
≤ Re(τ) < 1

2
and A′ < Im(τ) < A

will contribute a term 2πi · Resτ=τ0G(τ, z) to the equation. The poles of G(τ, z) occur only
when τ = z or when τ is equivalent to z under the action of Γ. In moving the contour, then,
the first nonzero contributions occur at τ = z = eiθ and τ = −1/z = ei(π−θ), and these are
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the only poles for
√

3/2 < A′ < A. The residues can be easily calculated using the alternative
formula

G(τ, z) =
e−2πimτ

−2πi

∆`(z)Ek′(z)

∆`(τ)Ek′(τ)

d
dτ

(j(τ)− j(z))

j(τ)− j(z)
.

If
√

3/2 < A′ < sin θ, the result is the equation
∫ 1

2
+iA′

− 1
2
+iA′

G(τ, z)dτ = fk,m(z)− e−2πimz − z−ke−2πim(−1/z).

We replace z with eiθ and multiply by eikθ/2e−2πm sin θ; simplifying, we find that

eikθ/2e−2πm sin θfk,m(eiθ)− 2 cos
(

kθ
2
− 2πm cos θ

)
,

which is the quantity we are trying to bound, is equal to

eikθ/2e−2πm sin(θ)

∫ 1
2
+iA′

− 1
2
+iA′

G(τ, eiθ)dτ.

As A′ decreases, the next nonzero contribution occurs when τ = −1
z+1

or τ = z
z+1

. Since
these points have real part −1/2 and 1/2, respectively, we add a small circular arc to each
of the vertical contours of integration in the usual way. The result is a contribution of

e−πim

(2 cos(θ/2))k
e−πm(2 sin θ−tan(θ/2))

from this pole. However, if θ is close to π/2, the pole at −z
z−1

will be nearby. To avoid this,
we choose A′ so that the contribution from this pole appears only if θ is not close to π/2.
Specifically, if 1.9 ≤ θ < 2π/3, we choose

A′ = .65 < Im( −1
eiθ+1

),

so that the quantity we are bounding equals

e−πim

(2 cos(θ/2))k
e−πm(2 sin θ−tan(θ/2)) + eikθ/2e−2πm sin θ

∫ 1/2

−1/2

G(x + .65i, eiθ)dx.

Alternatively, if π/2 < θ < 1.9, we choose

A′ = .75 > Im
( −1

eiθ+1

)
,

and the quantity we are bounding will equal

eikθ/2e−2πm sin θ

∫ 1/2

−1/2

G(x + .75i, eiθ)dx.

We deal with these cases separately.
In the first case, suppose that 1.9 ≤ θ < 2π/3. We assume that m ≥ |`| − `, and deal first

with the case where ` ≥ 0. Applying absolute values, we find that∣∣eikθ/2e−2πm sin θfk,m(eiθ)− 2 cos
(

kθ
2
− 2πm cos(θ)

)∣∣
is bounded above by

e−πm(2 sin θ−tan(θ/2))

(2 cos(θ/2))k
+ e−2πm sin θ

∫ 1/2

−1/2

∣∣G(x + .65i, eiθ)
∣∣ dx.

Looking at the first term,

1 < 2 cos(θ/2) <
√

2
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for θ ∈ [1.9, 2π/3), and

−m(2 sin θ − tan(θ/2)) ≤ 0

for these θ. We can thus bound the first term by 1, and need only show that

e−2πm sin θ

∫ 1/2

−1/2

∣∣G(x + .65i, eiθ)
∣∣ dx < 0.985.

To do this, we first note that the length of the contour of integration is 1, so we have

e−2πm sin θ

∫ 1/2

−1/2

∣∣G(x + .65i, eiθ)
∣∣ dx ≤ max

|x|≤ 1
2

e−2πm sin θ
∣∣G(x + .65i, eiθ)

∣∣ .

Expanding G, this becomes

max
|x|≤ 1

2

e−2πm(sin θ−.65)

∣∣∣∣
∆(eiθ)

∆(x + .65i)

∣∣∣∣
` ∣∣∣∣

Ek′(e
iθ)E14−k′(x + .65i)

∆(x + .65i)(j(x + .65i)− j(eiθ))

∣∣∣∣ .

To eliminate the dependence on ` and m, we note that for all |x| ≤ 1/2 and θ ∈ [1.9, 2π/3),
∣∣∣∣

∆(eiθ)

∆(x + .65i)

∣∣∣∣ ≤ 1,

so that

e−2πm(sin θ−.65)

∣∣∣∣
∆(eiθ)

∆(x + .65i)

∣∣∣∣
`

≤
∣∣∣∣

∆(eiθ)

∆(x + .65i)

∣∣∣∣
for all x and θ in the appropriate intervals. (If ` = 0, then either m > 0 and the exponential
term is smaller than the ratio of the ∆ terms, or else m = 0 = D and there are no zeros to
find.) Thus, we need only show that

max
|x|≤ 1

2

∣∣∣∣
∆(eiθ)

∆(x + .65i)

∣∣∣∣
∣∣∣∣

Ek′(e
iθ)E14−k′(x + .65i)

∆(x + .65i)(j(x + .65i)− j(eiθ))

∣∣∣∣ < 0.985.

Close examination of this quantity for all six choices of k′ shows that this is indeed the case.
This proves Lemma 3 and hence Theorem 1 for the case m, ` ≥ 0.

Remark. For most choices of k′, this quantity is closer to 0 than to 1. However, taking k′ = 0
and looking at values of x near 0 and values of θ near 2π/3 shows that replacing the integral
with max|x|≤.5 does not leave much margin for error in proving this quantity to be less than
1. This sensitivity prevents us from replacing the quotient of the ∆ terms by 1, and factors
into our choice of A′ to be .65.

Now suppose that ` = −n, for some integer n ≥ 1, and that m ≥ 2n. The first term
becomes

(2 cos(θ/2))12n−k′e−2πm(sin θ−tan(θ/2)).

Because m ≥ 2n, this is again bounded by 1 for θ ∈ [1.9, 2π/3].
Working as before, we find that we need to bound

max
|x|≤ 1

2

e−2πm(sin θ−.65)

∣∣∣∣
∆(x + .65i)

∆(eiθ)

∣∣∣∣
n ∣∣∣∣

Ek′(e
iθ)E14−k′(x + .65i)

∆(x + .65i)(j(x + .65i)− j(eiθ))

∣∣∣∣ .

Since m ≥ 2n, this is less than or equal to

max
|x|≤ 1

2

∣∣∣∣e−4π(sin θ−.65) ∆(x + .65i)

∆(eiθ)

∣∣∣∣
n ∣∣∣∣

Ek′(e
iθ)E14−k′(x + .65i)

∆(x + .65i)(j(x + .65i)− j(eiθ))

∣∣∣∣ .
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But since ∣∣∣∣e−4π(sin θ−.65) ∆(x + .65i)

∆(eiθ)

∣∣∣∣ < 1

for all |x| ≤ 1/2 and θ ∈ [1.9, 2π/3), we need only bound

max
|x|≤ 1

2

∣∣∣∣e−4π(sin θ−.65) ∆(x + .65i)

∆(eiθ)

∣∣∣∣
∣∣∣∣

Ek′(e
iθ)E14−k′(x + .65i)

∆(x + .65i)(j(x + .65i)− j(eiθ))

∣∣∣∣
for θ ∈ [1.9, 2π/3), and, again, for every choice of k′ this is less than .985. This completes
the proof of the first case.

A similar calculation shows that if π/2 < θ < 1.9, then∣∣∣∣∣e
ikθ/2e−2πm sin θ

∫ 1/2

−1/2

G(x + .75i, eiθ)dx

∣∣∣∣∣ < 1.985,

and this finishes the proof of Theorem 1.

6. Concluding remarks on the zeros of fk,m

It is clear from (6) and the well-known mapping properties of j that fk,m has all of its
zeros in F on the unit circle if and only if the Faber polynomial Fk,D has all of its zeros in
the interval [0, 1728]. In the case k′ = 0, D = 1, we directly compute

F12`,1(x) = x− (744− 24`).

It is obvious that if 24` > 744 or if 984 < −24`, then the root of this linear polynomial is
not in [0, 1728], and so f12`,1−` will have a zero in F off the unit circle. Similar computations
can be carried out for D = 2 or D = 3, providing further examples. On the other hand, a
computation shows that for the following weights k = 12` + k′, all basis elements fk,m have
all of their zeros in F on the unit circle.

k′ = 0 ` ∈ [−41, 10]
k′ = 4 ` ∈ [−31, 23]
k′ = 6 ` ∈ [−62, 10]
k′ = 8 ` ∈ [−21, 36]
k′ = 10 ` ∈ [−50, 20]
k′ = 14 ` ∈ [−38, 30]

As we mentioned, when k > 0 the forms fk,−m for 1 ≤ m ≤ ` are cusp forms. It is interesting
to compare our examples with the results of Rankin [9] and Gun [6], which give lower bounds
for the number of zeros of certain linear combinations of cuspidal Poincaré series Pk,m that
are on the arc {eiθ : θ ∈ (π

2
, 2π

3
)}. In a different direction, we remark that the zeros of

Hecke eigenforms of weight k are expected to become equidistributed in F with respect to
hyperbolic measure as k →∞ (see [11] for precise statements).
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4. , Über polynomische Entwicklungen II, Math. Ann. 64 (1907), 116–135.



WEAKLY HOLOMORPHIC MODULAR FORMS 11

5. J. Getz, A generalization of a theorem of Rankin and Swinnerton-Dyer on zeros of modular forms, Proc.
Amer. Math. Soc. 132 (2004), no. 8, 2221–2231 (electronic).

6. S. Gun, On the zeros of certain cusp forms, Math. Proc. Cambridge Philos. Soc. 141 (2006), no. 2,
191–195.

7. P. Jenkins, p-adic properties for traces of singular moduli, International Journal of Number Theory 1
(2005), no. 1, 103–107.

8. F. K. C. Rankin and H. P. F. Swinnerton-Dyer, On the zeros of Eisenstein series, Bull. London Math.
Soc. 2 (1970), 169–170.
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