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1 INTRODUCTION

The law of quadratic reciprocity is a gem from number theory. In this article
we show that it has a natural interpretation that can be generalized to an
arbitrary finite group. Our treatment relies almost exclusively on concepts
and results known at least a hundred years ago.1

A key role in our story is played by group characters. Recall that a
character χ of a finite Abelian group G is a homomorphism from G into C∗,
the multiplicative group of nonzero complex numbers. The set of all distinct
characters forms a group under point-wise multiplication that is isomorphic
to G. Later we will need the notion of a character defined on an arbitrary
finite group G, which is the trace of a finite-dimensional representation of G.

A character χ of the group (Z/nZ)∗ of reduced residue classes modulo a
positive integer n gives rise to a Dirichlet character modulo n, also denoted
by χ, which is the function on the integers defined by

χ(a) =

{
χ(a) if a is prime to n,
0 otherwise.

In case n = p is an odd prime, (Z/pZ)∗ is cyclic of (even) order p− 1. Thus
it has a unique character of order 2. Its associated Dirichlet character is
called the Legendre symbol

( ·
p

)
. Hence

(
a
p

)
= 0 if p | a; otherwise we have

that
(
a
p

)
= 1 if a is a square modulo p and

(
a
p

)
= −1 if a is not a square

modulo p.

1See [2, Chap.1] for a beautiful exposition of much of the nineteenth-century algebra
and number theory we will take as known.
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In 1872 Zolotarev [13] gave an interpretation of the Legendre symbol
(
a
p

)
that is less well-known: it gives the sign of the permutation of the elements
of G = Z/pZ induced by multiplication by a, provided p - a. To see this,
first observe that this recipe defines a character on (Z/pZ)∗. Furthermore, if
it is not trivial, this character must have order 2 and hence give the Legendre
symbol. But it is not trivial, for a generator of (Z/pZ)∗ induces a (p − 1)-
cycle, which is an odd permutation. Motivated by this observation, we will
define in section 3 below a quadratic symbol for any finite group G.

The classical law of quadratic reciprocity states that for distinct odd
primes p and q the following hold:(

q
p

)
= (−1)

p−1
2

q−1
2

(
p
q

)
,
(−1
p

)
= (−1)

p−1
2 ,

(
2
p

)
= (−1)

p2−1
8 . (1)

This was first proven by Gauss in 1796 when he was nineteen years old. By
1818 he had published six proofs.2 The ideas behind his sixth proof [5] (see [2,
p.19]), based on the Gauss sum, led to proofs of quadratic reciprocity using
the arithmetic of cyclotomic fields and the Frobenius automorphism, which
was introduced in 1896 [3]. We will combine this classical technique with
another invention of Frobenius from 1896 [4], the character table, to prove a
law of reciprocity for the quadratic symbol for any finite group G. A corollary
of our result, given in section 3, implies classical quadratic reciprocity when
G = Z/pZ and also extends Zolotarev’s observation to any group of odd
order.

2 THE KRONECKER SYMBOL

Before explaining this generalization, we restate the law of quadratic reci-
procity in one formula by introducing the Jacobi and Kronecker symbols.
The Jacobi symbol simply extends the Legendre symbol to

( ·
n

)
for an arbi-

trary odd positive integer n by multiplicativity: if n > 1 and n = p1 · · · pr is
its factorization into (not necessarily distinct) primes, we have

(
a
n

)
=

r∏
k=1

(
a
pk

)
,

while
(
a
1

)
= 1.

2A good reference for the many known proofs of the law of quadratic reciprocity is [8].
Recently a novel elementary proof was found by S. Kim [7].
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A discriminant is a nonzero integer d that is congruent to either 0 or 1
modulo 4.3 For a discriminant d, the Kronecker symbol

(
d
·

)
further extends

the Jacobi symbol via the definition(
d

2

)
=


0 if d is even,
1 if d ≡ 1(mod 8),
−1 if d ≡ 5(mod 8),

and by letting
(
d
−1

)
be the sign of d. The value of

(
d
a

)
is then defined for all

integers a by multiplicativity, where we set
(
d
0

)
= 0 when d 6= 1 and

(
1
0

)
= 1.

By means of these extensions, the law of quadratic reciprocity (1) takes an
elegant form for n positive and odd and any integer a:(a

n

)
=
(n∗
a

)
, (2)

where n∗ = (−1)
n−1

2 n. Note that n∗ is a discriminant because n is odd.

3 THE QUADRATIC SYMBOL FOR A FI-

NITE GROUP

Let G be a finite group of order n. An integer a that is prime to n induces a
permutation, call it φ, of the m conjugacy classes C1 = {1}, C2, . . . , Cm of G
by sending each element g to ga and hence Cj to Ca

j . Define the quadratic
symbol for G at any integer a by

( a
G

)
=


0 if (a, n) 6= 1,
1 if φ is even,
−1 if φ is odd.

(3)

It is easy to see that
( ·
G

)
defines a real Dirichlet character modulo n.4

Zolotarev’s observation from the introduction is that the quadratic symbol
for G = Z/pZ with an odd prime p is the Legendre symbol:( a

G

)
=
( a

|G|

)
. (4)

3We include the possibility that d is a square, which is usually disallowed.
4In fact, it is defined modulo the least common multiple of the orders of all elements

of G.

3



A conjugacy class C in an arbitrary group G is said to be real if C−1 = C
and complex otherwise. Here C−1 denotes the image of C under the corre-
spondence g 7→ g−1. Clearly the complex conjugacy classes occur in pairs
C and C−1 with |C| = |C−1|. We order the conjugacy classes so that the
first r1 are real. Thus m = r1 + 2r2, where r2 is half the number of complex
conjugacy classes. We then set

d = d(G) = (−1)r2|G|r1
r1∏
j=1

|Cj|−1. (5)

This is a nonzero integer since for any conjugacy class C and any element g
of C we have |G|/|C| = |CG(g)|, where CG(g) signifies the centralizer of g [2,
p.42]. It is clear that d is divisible by n = |CG(1)| and has the same prime
divisors as n. We call d the discriminant of G, a name that is justified by
the first statement of our main result.

Theorem 1 Let G be a finite group with discriminant d as defined by (5).
Then d ≡ 0 or 1 (mod 4), and for any integer a( a

G

)
=
(d
a

)
. (6)

In particular,
( ·
G

)
is trivial if and only if d is a square.

In case G has odd order we have the following direct generalization of classical
quadratic reciprocity (2):

Corollary 1 If G has odd order n, then d = n∗ and for any integer a,( a
G

)
=
(n∗
a

)
. (7)

Also,
( ·
G

)
is trivial if and only if n is a square.

It follows from (7) and (2) that Zolotarev’s result (4) holds for any group G
of odd order.
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4 PROOFS

We shall refer to [6] and [10] for the basic facts we need about characters of
finite groups and algebraic number fields.

Let G be a finite group G with conjugacy classes C1 = {1}, C2, . . . , Cm.
The character table of G (see [6, p.159]) is the m×m matrix:

M =

χ1(C1) . . . χ1(Cm)
...

. . .
...

χm(C1) . . . χm(Cm)

 , (8)

where χ1 = 1, χ2, . . . , χm are the irreducible characters of G [6, p.119]. Here
we use the convention that χ(C) = χ(g) for any g in C. By the (second)
orthogonality relations for characters [6, Theorem 16.4(2), p.161] we have

M∗M =

|G||C1|−1 . . . 0
...

. . .
...

0 . . . |G||Cm|−1

 , (9)

a diagonal matrix. Here M∗ denotes the conjugate transpose of M . Since
χ(C−1) = χ̄(C) for any character χ and any conjugacy class C, it is easy to
see that

det M̄ = (−1)r2 detM. (10)

Appealing to (9) and (5) we arrive at the identity

(detM)2 = `2d (11)

for some positive integer `.
Each entry χi(Cj) of M is an algebraic integer in the cyclotomic field

Q(ζn), where ζn = e2πi/n. Now Q(ζn) is a Galois extension of Q whose Galois
group is isomorphic to (Z/nZ)∗ by the map σa 7→ a, with σa in Gal(Q(ζn)/Q)
acting on ζn by

σa(ζn) = ζan

[10, Theorem 1 p.92]. Using this information, it is not difficult to check that

σa(χ(g)) = χ(ga) (12)

for any character χ and any element g of G.
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To prove the first statement of Theorem 1, we apply an argument used
by Schur [12] to prove Stickelberger’s theorem about the discriminant of a
number field. Observe that by the definition of the determinant

detM =
∑

sgn(ρ)χ1(Cρ(1))χ2(Cρ(2)) . . . χm(Cρ(m)),

where the sum is over all permutations ρ of the integers {1, . . . ,m} and where
sgn(ρ) = ±1 according to whether ρ is even or odd. Write this as A − B,
where A is the sum of the even permutations and B is the sum of the odd
permutations. By (12) both of the algebraic integers A + B and AB are
invariant under the Galois group, hence are ordinary integers. In particular,
invoking (11) we see that

`2d = (A−B)2 = (A+B)2 − 4AB ≡ (A+B)2 ≡ 0, 1 (mod 4),

which proves the first statement.5

It is apparent from (8) and (12) that

σa(detM) =
( a
G

)
detM, (13)

so by (11) we have

σa(
√
d) =

( a
G

)√
d. (14)

Since
( ·
G

)
is a character modulo n, to prove (6) it is enough to show it for

a = p such that p - n and for a = −1. If p - n we use the automorphism σp,
which is called the Frobenius automorphism of p. We say that a prime p splits
in an algebraic number field K if the principal ideal generated by p in the ring
of integers of K factors into [K : Q] distinct prime ideals, where [K : Q] is the
degree of K over Q. The Frobenius automorphism σp has the property that
p splits in any subfield of Q(ζn) if and only if σp fixes that subfield point-wise

[10, p.91]. Thus p splits in Q(
√
d) if and only if σp(

√
d) =

√
d. Furthermore,

the Kronecker symbol has the fundamental property that p splits in Q(
√
d)

if and only if
(
d
p

)
= 1 [10, p. 77]. Thus we infer from (14) that for p - n( p

G

)
=
(d
p

)
.

5Added 12/8/09: Note that if ` is even then necessarily n is even and so there must be
a non-trivial real conjugacy classes having an odd number of elements, so 4 | d.
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In view of (10) and (5) we have(−1

G

)
= (−1)r2 =

( d

−1

)
, (15)

finishing the proof of (6).
It is a standard result [9, Theorem 3.3, p.72] that if d is not a square then(

d
·

)
, hence

( ·
G

)
, is nontrivial. Thus we have established Theorem 1.

Suppose now that G has odd order n. Burnside [1, section 222 p.294]
observed that C1 is the only real conjugacy class. To see this, suppose that
g is in a real conjugacy class. In particular, h−1gh = g−1 for some h. Then
h−2gh2 = g, which places h2 in CG(g). Since n is odd, the order of h is odd,
say 2` + 1. It follows that h = (h2)`+1, implying that h belongs to CG(g).
Thus g = g−1. Since g has odd order, g = 1.

Because r1 = 1, it is clear from (5) that d = (−1)
m−1

2 n. By the first
statement of Theorem 1 we must have

d = (−1)
n−1

2 n = n∗,

since n is odd.6 The last statement of Corollary 1 follows from that of
Theorem 1, for when n is odd n∗ is a square if and only n is a square.

5 SOME EXAMPLES

We compute the discriminants of some groups with even order. Suppose
first that G is Abelian and that the subgroup of G consisting of 1 and the
elements of order 2 has order 2 t. Then r1 = 2 t, so

d = (−1)
n−2t

2 n2t

.

It follows that for an Abelian group G of even order n the symbol
( ·
G

)
is

nontrivial if and only if 4 |n and t = 1, in which case we have(
a
G

)
= (−1)

a−1
2

whenever (a, n) = 1. The condition t = 1 holds for instance if G is cyclic.
In general, if G has only rational characters, then it follows easily from

(12) that
( ·
G

)
is the trivial character and hence that d is a square. This holds

6A stronger result discovered by Burnside [1, p.295] is that n ≡ m (mod 16).
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in particular for the symmetric group G = Sk, where one can also explicitly
compute d.

On the other hand, it is not difficult to produce non-Abelian groups with
only real characters and with nontrivial quadratic symbols. Consider, for
example, the family of simple groups given by Gr = SL(2,Fq) for q = 2r with
r > 1 (i.e., the group of 2×2 matrices of determinant one with entries from the
field Fq of order q). By [11, p.134 (= p.247 in Gesammelte Abhandlungen)]
we have n = q(q2 − 1), m = r1 = q + 1, and

d = q2(q + 1)(q2 − 1)q/2,

which is a square if and only if r = 3. The last statement follows from the
fact that if q + 1 = x2, then 2r = x2 − 1 = (x− 1)(x+ 1). Thus x = 2`+ 1,
so 2r−2 = `(`+ 1), which implies that r = 3. If r = 2 we obtain G2 = A5 and(
a
A5

)
=
(

5
a

)
. For r = 16,

(
a
G16

)
=
(

65537
a

)
with 65537 = 216 + 1, a prime.
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