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1. Introduction

In these lectures I will discuss the classical Linnik problems about the distribution
of lattice points on a sphere and analogous hyperbolic problems associated to
binary quadratic forms. These problems were introduced by Linnik and are dis-
cussed in his bookErgodic Properties of Algebraic Fields. (Linnik, 1968) Linnik
applied an intricate ergodic method to solve them subject to a certain condition.
In 1987 Iwaniec (Iwaniec, 1987) made a breakthrough in the theory of modular
forms of half-integral weight that allowed the Linnik problems to be solved un-
conditionally using more traditional modular forms methods (Duke, 1988). These
methods have since been much further developed in the more general context
of subconvexity estimates forL-functions, where they have far-ranging impli-
cations/applications. My main purpose is to give an exposition of the original
modular forms approach emphasizing the original ideas, which have an intuitive
appeal. I will only introduce briefly the connection withL-functions. Recently
there has been striking progress by a number of mathematicians in the analytic
theory ofL-functions in connection with various equidistribution problems. Hope-
fully, these lectures will provide some background for these developments, and
serve as a rough guide to help those interested in pursuing details. An excellent
exposition of many of the topics treated here is (Sarnak, 1990).

2. The Linnik Problems

THE SPHERE

Consider the lattice pointsα ∈ Z3 with |α|2 = x2
1 + x2

2 + x2
3, for α = (x1, x2, x3).

The setΩn = {x = α/|α|;α ∈ Z3; |α|2 = n} for n ∈ Z+ lies on the unit sphere
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S2. By a classical result of LegendreΩn is non-empty iff n , 4a(8b + 7) for a
and b integers, a non-negative. Linnik asked whether the setΩn subject to the
condition thatn ≡ 1,2,3,5,6 (mod 8) is uniformly distributed with respect to
(normalized) Lebesgue measuredσ onS2; is it the case given a reasonable subset
of S2 that the proportion of points in it fromΩn approaches the measure of the set
asn→ ∞? Linnik was able to prove this using his “ergodic method” but subject
to the condition required by the method that the Legendre symbol (n/p) = 1
for a fixed odd primep. An advance made by Iwaniec in the estimation of Fourier
coefficients of cusp forms of half-integral weight later allowed this condition to be
removed. To state this, it is convenient to couch the uniform distribution property
in terms of the approximation of the integral of a test function by “Riemann sums.”
For simplicity I will restrict attention here to the most interesting case wheren is
square-free.

THEOREM A. Suppose that f∈ C∞(S2). Then, as n→ ∞ with n square-free
and n. 7 (mod 8),

1
#Ωn

∑
x∈Ωn

f (x)→
∫

S2
f dσ.

I will spend most of the lectures explaining, modulo many technical details, the
proof of this result. It should be pointed out that one may ask the same question
about the lattice points on a ellipsoid given by a positive definite integral ternary
quadratic form. Then, most of the interest shifts to the question of characterizing
by mean of congruences those integersn that are represented by the form. For
square-freen, the analytic techniques used to prove Theorem A apply directly, but
for generaln the issue becomes quite delicate (see e.g. (Duke and Schulze-Pillot,
1990; Duke, 1997)).

CM POINTS

Another problem introduced by Linnik concerns the distribution of roots of inte-
gral quadratic equations with a large negative discriminant. Here the appropriate
setting is±Γ\H , whereH is the upper half-plane andΓ = SL(2,Z) is the modular
group. The quadratic equations are best introduced via positive definite binary
quadratic forms

Q = Q(x, y) = ax2 + bxy+ cy2, d = b2 − 4ac= discQ < 0

with a,b, c ∈ Z, a > 0. After Gauss, there are only finitely manyΓ-equivalence
classes of such forms with a givend (see (Cox, 1989)).

For a givenQ = ax2 + bxy+ cy2 with discQ = d, the root ofax2 + bx+ c = 0

zQ =
−b+

√
d

2a
∈ H
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associated toQ is called a CM point. It is readily shown that the orbitγzQ runs
over the roots of the forms equivalent toQ, whereγ ∈ Γ acts as a linear fractional
map. LetF denote the standard fundamental domain forΓ:

F =
{
z ∈ H ;−1

2 ≤ Rez≤ 0 and|z| ≥ 1 or 0< Rez< 1
2 and|z| > 1

}
.

We shall writeΛd = {zQ ∈ F ; discQ = d}. For everyd ≡ 0,1(mod 4) we can find
a (principal)Q with discQ = d and associatedzQ ∈ F :

d ≡ 0(4) : x2 −
d
4

y2, zd =

√
d

2
,

d ≡ 1(4) : x2 + xy−
d − 1

y
y2, zd =

−1+
√

d
2

.

It is convenient to define by convention a sum overΛd to mean that a summand
should be weighted by12 if Q = a(x2+y2) and by1

3 if Q = a(x2+xy+y2) to account
for the automorphs inΓ. In particular,H(d) =

∑
Λd

1 is called the Hurwitz class
number. Recall thatd is said to be fundamental when it equals the discriminant
of Q(

√
d). In this case, whend < −4, H(d) equals to the class numberh(d) of

Q(
√

d) Generally I will only be concerned with fundamental discriminants.
A PSL(2,R)-invariant measure forH is given bydx dy/y2 and"

F

dx dy/y2 = π/3.

Let us denote bydµ = (3/π) dx dy/y2 the normalized invariant measure. The
second Linnik problem concerns the distribution of thezQ ∈ F asd→ −∞.

THEOREM B. Suppose that f∈ C∞(H) isΓ-invariant and bounded onH . Then,
as d→ −∞ with d a fundamental discriminant,

1
#Λd

∑
z∈Λd

f (z)→
∫
Γ\H

f dµ.

The proof of this result is quite analogous to that of Theorem A but requires more
machinery. The main reason for this is the fact thatΓ\H is non-compact.

There is a parallel result one can obtain for indefinite forms asd → +∞,
namely the uniform distribution of closed geodesics on±Γ\H when grouped by
discriminant. In fact, the proof of Theorem B yields this result as well. This prob-
lem is in fact a revealing paradigm for more general situations in which infinite
unit groups exist (see. e.g. (Cohen, 2005) and references given there).
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3. Holomorphic Modular Forms of Half-Integral Weight

This subject is based on the properties of the Jacobi theta series

θ(z) =
∑
n∈Z

e(n2z),

which has a product representation via the Jacobi triple product formula: write
q = e(z)

θ(z) =
∞∏

n=1

(1− q2n)(1+ q2n−1)2.

This remarkable function satisfies forγ ∈ Γ0(4), whereΓ0(N) = {γ ∈ SL(2,Z): c ≡
0(N)}, the transformation formula

θ(γz) = j(γ, z)θ(z),

where j(γ, z) = (c/d)ε−1
d (cz+ d)1/2, with (c/d) the (extended) Legendre sym-

bol, εd =

{
1, d ≡ 1(4)
i, d ≡ 3(4)

andz1/2 = |z|1/2 exp(12 i argz), with −π < argz ≤ π,

(see (Shimura, 1973)). Actually, Jacobi studiedθ(z/2), whose relevant group is
conjugate toΓ0(4), namelyΓ(2).

Fork ∈ 1
2Z
+ andN ≡ 0(4) if 2k is odd, a holomorphic modular form of weight

k for Γ0(N) is a holomorphic function onH sit for γ ∈ Γ0(N)

f (γz) = j(γz)2k f (z),

together with the condition thatf be holomorphic in the cusps ofΓ0(N). The usual
way to do this is to define the Fourier expansion off in each cusp and require that
no negative terms occur. This is easily done ati∞, where the Fourier expansion
must look like

f (z) =
∑
n≥0

a(n)e(nz). (1)

For other cusps and 2k odd this is a little bit trickier and is best done using a
cover of SL(2,R) (see (Shimura, 1973) or (Koblitz, 1984)). For our purposes it
is enough to impose the equivalent growth condition on the invariant function
yk/2| f (z)| = F(z) that

F(z) � yA + y−A for some A ≥ 0 (2)

and allz ∈ H . Let Mk(N) denote the space of all such functions; it is known to
be finite dimensional. The subspace of cusp formsSk(N) consists of theseF ∈
Mk(N) whose zeroth Fourier coefficient in every cusp vanishes. Fork > 0 this is
equivalent to having (2) withA = 0.



LINNIK PROBLEMS 5

The proof of Theorem A relies heavily on non-trivial estimates for the Fourier
coefficients of cusp forms. This turns out to be rather harder when 2k is odd, which
is the case needed. Let us recall the trivial bound of Hecke for a cusp formf and
anyk:

|a(n)| �
f

nk/2. (3)

The proof is easy. For anyy > 0

a(n)e−2πny =

∫ 1

0
e(−nx) f (x+ iy) dx

and so using (2) withA = 0 gives

|a(n)| ≤ e2πnyy−k/2
∫ 1

0
F(x+ iy) dx

� e2πnyy−k/2.

Takingy = 1/n gives (3).
Hecke’s bound certainly can fail for non-cusp forms; consider the easiest

example when weightk = 4 of the Eisenstein series

E4(z) = c4

∑
γ∈Γ∞\Γ

(cz+ d)−4 = 1+ 240
∞∑

n=1

σ3(n)e(nz), (4)

which hasσ3(n) =
∑

d|n d3 and cannot be bounded by a constant timesn2.
It is an important fact that one can make enough modular forms via Eisenstein

series to subtract off the growth of an arbitrary modular form in the cusps, leaving
a cusp form. This is harder fork = 1

2,1,
3
2, and 2 since then the Eisenstein series

do not converge absolutely. In fact, in these cases one is stuck dealing with non-
holomorphic modular forms. This turns out to be the main difference between
Theorems A and B.

4. Theta Series With Harmonic Polynomials

The relevance of modular forms to the Linnik problems is through the concept
of a Weyl sum. Recall that for a finite set of pointsXn on S1 = R/Z, the Weyl
criterion for equidistribution ofXn with respect to Lebesgue measure asn→ ∞ is
that for eachm ∈ Z, m, 0,

1
#Xn

∑
θ∈Xn

e(nθ)→ 0
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asn→ ∞. The situation for our pointsΩn onS2 is very similar. Observe that( x+ iy
|x+ iy|

)m

= e(mθ)

and ( x− iy
|x− iy|

)m

= e(−mθ)

if θ = arg(x + iy)/2π, for m > 0. Now (x + iy)m and (x − iy)m are homogeneous
harmonic polynomials onR2. This example generalizes beautifully toRn. In par-
ticular forR3 it can be shown that anyf ∈ C2(S2) can be uniformly approximated
by a finite sum of homogeneous harmonic polynomials inR3 restricted toS2 (for
a proof see Stein (Stein and Weiss, 1971, Corollary 2.3, p. 141)). Thus the Weyl
criteria for uniform distribution of the lattice points onS2 requires that we prove
that for any homogeneous harmonic polynomialP(x) onR3 of degreè > 0

1
#Ωn

∑
X∈Ωn

P(X)→ 0 as n→ ∞,

as in Theorem A. Equivalently, we require∑
α∈Z3

|α|2=n

P
(
α

|α|

)
= O

(
r3(n)

)

wherer3(n) = #{α ∈ Z3: |α|2 = n}.

PROPOSITION 4.1.The theta series

θ(z,P) =
∑
α∈Z3

P(α)e(|α|2z) =
∑

n

r(n; P)e(nz)

is a holomorphic modular form of weight3
2 + ` for Γ0(4), which is a cusp form if

` > 0. Also,θ(z,P) = 0 unless̀ is even.
Proof.See (Shimura, 1973). �

When` = degP = 0 we have

θ(z,1) = θ3(z) =
∑
n≥0

r3(n)e(nz).

To prove Theorem A, we need two ingredients:

(L) r3(n)�ε n1/2−ε for n as in Theorem A and allε > 0,

(U) |r(n,P)| � nk/2−1/4−δ for n square-free and some fixedδ > 0, when` > 0.
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To see this, note
∑
|α|2=n P(α/|α|) = n−`/2r(n; P) andk/2− 1

4 = `/2+
1
2, so (U) says

equivalently
∑
|α|2=n P(α/|α|) � n1/2−δ = O

(
r3(n)

)
. As we shall review below, (L)

follows from classical results of Gauss and Siegel, but with an ineffective constant.

5. Linnik Problem for Squares and the Shimura Lift

At this point we see how far from (U) Hecke’s exponentk/2 is. Before turning
to this problem in earnest, let us treat a related problem that leads to integral
weights, namely the distribution of rational points onS2. These points are in one-
one correspondence with the primitive (α1, α2, α3) ∈ Z3 with |α|2 = m2 via α 7→
(1/m)α, m > 0. Herem is the height of the point. This easily leads us to consider
the Linnik problem onS2 for n = m2.

Building an earlier results of Stieltjes, Hurwitz showed that

∞∑
n=1

r3(n2)n−s = 6(1− 21−s)
ζ(s)ζ(s− 1)

L(s, χ−4)
,

whereχ−4(·) = (−4
·

) is the Kronecker symbol. One easily derives from this that
for oddn

r3(n2) � n, (5)

which is even better than (L). This phenomenon was generalized by Shimura and
is called the Shimura lift. In our case we can infer for` > 0 that there is a cusp
form F(z) = Σa(n)e(nz) of weight 2̀ + 2 for Γ0(2) such that

∞∑
n=1

r(n2,P)n−s =

∑∞
1 a(n)n−s

L(s− `, χ−4)
.

(see (Niwa, 1975)).
Thus

r(n2,P) =
∑
d|n

a(d)µ
(n

d

)
χ−4

(n
d

)(n
d

)`
and so in place of (U) we need a bound fora(n) of the form

|a(n)| � n`+1−δ as k− 1
2 = ` + 1,

in order to beat the lower boundr3(n2) � n. Thus any non-trivial boundfor weight
2`+2 cusp forms gives Theorem A for squares. It is then an easy matter to restrict
to primitive points and derive the uniform distribution of rational points of a given
height onS2 as the height tends to infinity.
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6. Nontrivial Estimates for Fourier Coefficients

At first look, the methods we shall apply to establish non-trivial estimates for the
Fourier coefficients of cusp forms of integral and half-integral weights appear to
be the same. However, there is a striking difference. Roughly speaking, one must
overcome the bound given by Weil’s bound for Kloosterman sums in the half-
integral weight case. In fact, this bound is more appropriately called “trivial,” as
we will see.

The story about obtaining non-trivial bounds in the integral weight case has
a complex plot. Here I will describe the Kloosterman sums approach. It will be
observed that the role of Hecke operators has been ignored so far. Such an omis-
sion becomes a serious liability in the integral weight case but, since their role in
the half-integral weight case is less central, at least for our purposes here, we will
continue to not emphasize them.

Historically speaking, the first approach to obtaining non-trivial estimates for
Fourier coefficients was via the circle method. Kloosterman produced his sums in
this context and by non-trivially estimating them solved an important problem on
the representations of integers by positive definite integral quadratic forms in four
variables. Later it was found by Petersson and Selberg that one could take direct
advantage of automorphy by constructing Poincaré series.

Consider forΓ = Γ0(N) andm≥ 0 the function

Pm(z, k) =
∑

γ∈Γ∞\Γ

j(γ, z)−2ke(mγz),

which converges absolutely and uniformly on compact subsets ofH , provided
thatk > 2. It is not hard to show thatPm ∈ Sk(N) for m> 0 and in fact they span
Sk. Consider that forf ∈ Sk(N) with f (z) =

∑∞
1 a(n)e(nz)

〈Pm, f 〉 =
∫
Γ\H

Pm(z) f̄ (z)yk dx dy

y2

=

∫
Γ\H

∑
γ∈Γ∞\Γ

(
j(γ, z)

)−2ke(mγz) f̄ (z)yk−2 dx dy

=

∫ ∞

0

∫ 1

0
e(mz) f̄ (z)yk−2 dx dy

= ā(m)(4πm)−k+1Γ(k− 1). (6)

Thus〈Pm, f 〉 = 0 for all m≥ 1⇒ a(m) = 0⇒ f ≡ 0. It follows that it is enough
for us to estimate the Fourier coefficients ofPm.

A nice calculation (see (Sarnak, 1990) or (Iwaniec, 1997)) shows that if we
write

Pm(z, k) =
∑
n>0

P̂m(n)e(nz)
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then

P̂m(n) = 2(n/m)(k−1)/2

δm,n + 2πi−k
∑

c≡0(N)
c>0

Jk−1

(4π
√

mn
c

)
K(m,n; c)c−1

 (7)

where

Jk−1(z) =
∑
`≥0

(−1)`

`!Γ(` + k)

( z
2

)k−1+2`

is theJ-Bessel function and

K(m,n; c) =
∑

d(modc)
(d,c)=1

( c
d

)2k

ε̄2k
d e

(
md̄ + nd

c

)

is a Kloosterman sum of weightk, a kind of finite analogue ofJk−1 (via an integral
representation).

SUPPOSEK > 2 IS EVEN

This is enough to handle the Linnik problem for squares above, since the cusp
form there was weight 2̀+ 2. We shall ignore the case of odd integralk, even
though in general this is very interesting.

For evenk the Kloosterman sum is

K(m,n; c) =
∑
d(c)

(d,c)=1

e
(md̄ + nd

c

)

and satisfies the famous Weil bound

|K(m,n; c)| �
ε

c1/2+ε.

TheJ-Bessel function satisfies forx > 0

Jk−1(x) � min
{
xk−1,

1
√

x

}
so we may conclude from (7) that

P̂m(n) �ε n(k−1)/2

 ∑
c≥4π

√
mn

( √n
c

)k−1

c−1/2+ε

 + n(k−1)/2

 ∑
c<4π

√
mn

( c
√

n

)1/2

c−1/2+ε


� nk−1

∑
c≥4π

√
mn

c1/2−k+ε + nk/2−3/4
∑

c<4π
√

mn

cε

� nk/2−1/4+ε.
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This gives the following result, hence the Linnik problem Afor squares.

PROPOSITION 6.1.For k > 2 even and f∈ Sk(N) with f = Σa(n)e(nz) we have

a(n) �
ε

nk/2−1/4+ε.

Remarks.

1. Any non-trivial bound forK(m,n; c) yields a non-trivial bound fora(n). This
is what Kloosterman accomplished.

2. Another way to obtain a non-trivial estimate is the Rankin–Selberg method.
This works well for integral weights but falls short of Weil’s bound.

For generalk > 2 and f j = Σa j(n)e(nz) an ortho-normal basis forSk(N), (6)
gives

Pm(z, k) =
J∑

j=1

〈Pm, f j〉 f j

=
Γ(k− 1)

(4πm)k−1

J∑
j=1

ā j(m) f j(z)

and so

P̂m(n, k) =
Γ(k− 1)

(4πm)k−1

J∑
j=1

ā j(m)a j(n).

Writing (7) for P̂m(n, k) yields the Petersson formula. It is especially useful for
estimations whenn = m:

Γ(k− 1)

(4πn)k−1

J∑
j=1

|a j(n)|2 = 1+ 2πi−k
∑

c≡0(N)

c−1Jk−1

(4πn
c

)
K(n,n; c). (8)

It is easily checked that this yields the estimate of Proposition 6.1 again.
For integralk this method reaches its limit here. One must introduce Hecke

operators and interpret the Fourier coefficients of Hecke eigenforms algebraically.
This led to Deligne’s proof of the Ramanujan conjecture (Eichler proved the case
k = 2).

THEOREM 6.2 (Deligne).For k ∈ Z+ and f ∈ Sk(N) we have

a(n) � n(k−1)/2+ε.
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7. Salíe Sums

When 2k is odd the Kloosterman sum still satisfies

|K(m,n; c)| �
ε

c1/2+ε

and Proposition 6.1 still holds, but now it is insufficient to get the Linnik problem
since we needed to obtain forδ > 0 andk ≥ 5/2 the bound

|r(n,P)| � nk/2−1/4−δ. (U)

Perhaps it is appropriate that the exponentk/2− 1
4 is in fact “trivial” in the sense

that Weil’s bound in this case is entirely elementary. This is due to the fact that
the Kloosterman sum can be evaluated, a fact observed in special cases by Salié.
This evaluation is one of the keys behind Iwaniec’s result. In this section we give
a recent proof of Salié’s result found býArpád Tóth via Gauss sums (Tóth, 2005).

For the casek = 3
2 + `, ` even, the Kloosterman sum is

K(m,n; c) =
∑
d(c)

εd

( c
d

)
e
(md+ nd̄

c

)
.

This sum can be evaluated in a simpler form. By (8) we only need the casem= n.
An application of the Chinese reminder theorem and quadratic reciprocity puts

the main behaviour on the Salié sum forq > 0 odd (factor out the even part)

S(m,n; q) =
∑

a(modq)

(a
q

)
e
(ma+ nā

q

)
.

The Jacobi symbol makes the Salié sum a finite analogue ofJk−1 for 2k odd, which
is elementary; for instance,

J1/2(z) =

√
2
πz

sinz. (9)

By changing variables when (n,q) = 1 we have

S(n,n,q) =
(n
q

)
S(n2,1,q).

The analogue of (9) is

PROPOSITION 7.1.

S(n2,1,q) = εq
√

q
∑

x2≡1(q)

e
(2xn

q

)
.
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Tóth’s proof.We use the Gauss sum

G(a,b; q) =
∑
x(q)

e
(ax2 + bx

q

)
with evaluation

G(a,0;q) = εq
√

q
(a
q

)
.

Now let A =
∑

x2≡n2(q) e(2x/q) so that we must show

S(n2,1;q) = εq
√

qA.

Now

A =
1
q

∑
x(q)

e
(2x

q

)∑
a(q)

e
(a(x2 − n2)

q

)
=

1
q

∑
a(q)

G(a,2;q) e
(
−an2

q

)
=

1
q

∑
(a,q)=1

G(a,2;q) e
(
−an2

q

)
sinceG(a,b; q) = 0 if (a,q) - 2 andq is odd (exercise). But for (a,q) = 1

G(a,2;q) = e
(
−ā
q

)
G(a,0;q)

= e
(
−ā
q

)(a
c

)
εq
√

q

so

A =
εq
√

q

∑(a
c

)
e
(
−an2 − ā

q

)
,

which gives the result sinceA = Ā. �

8. An estimate of Iwaniec

In 1987 Iwaniec (Iwaniec, 1987) proved

THEOREM 8.1. Let f ∈ Sk(N) with 2k ≥ 5 odd. Then, for n square-free,

|a(n)| �
ε

nk/2−1/4−1/28+ε.
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Remark.By the Shimura lift this holds for alln. It also holds for forms with
k = 1

2, 3
2 but now the square-free condition is needed.

Iwaniec’s estimate makes use of an equivalent form of Proposition 7.1, namely
that forq odd and (n,q) = 1

S(n,n; q) =
(n
q

)
εq
√

q
∑
ab=q

(a,b)=1

e
(
2n

( ā
b
−

b̄
a

))
. (10)

He uses a lovely embedding idea in conjunction with the Petersson formula;
cusp forms forΓ0(N) are also cusp forms forΓ0(M), if N|M. This, together with
positivity leads to

(logP)−1 |a(n)|2

nk−1
�

P
logP

+
∑

P≤p≤2p

∣∣∣∣∣∣∣∣
∑

c≡(modpN)

K(n,n; c)
c

Jk−1

(4πn
c

)∣∣∣∣∣∣∣∣ . (11)

By exploiting the bilinear form of (10) he was able to give eventually the
bound

PROPOSITION 8.2.∑
P≤p≤2P

|KNP(x)| �
ε

[xP−1/2 + xn−1/2 + (x+ n)5/8(x1/4P3/8 + n1/8x1/8P1/4)](xnp)ε,

where

KQ(x) =
∑
c≤x

c≡0(Q)

c−1/2K(n,n; c)e
(2nv

c

)
for v = 0,1,−1.

When combined with (11), this eventually leads to Theorem 8.1. Of course,
this brief description hardly does justice to Iwaniec’s argument. Sarnak has given
an excellent treatment of the essential ideas in (Sarnak, 1990) and for full details
the best reference is Iwaniec’s original paper. Iwaniec later gave a different and in
some ways simpler proof of theorem (with a weaker exponent) in (Iwaniec, 1997).

9. Theorems of Gauss and Siegel

In order to complete the proof of Theorem A we must now prove (L), since (U)
follows from Iwaniec’s estimate with anyδ < 1/28. In the Disquisitiones, Gauss
proved thatr3(n) is related to a class number. Supposen is square-free. Then for
d = discQ(

√
−n) Gauss’s formula can be put in the simple form

r3(n) = 12H(d)
(
1−

(d
2

))
,
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where (d/2) is the Kronecker symbol. But Siegel proved (see (Iwaniec and Kowal-
ski, 2004)) that

H(d)�
ε
|d|1/2−ε

for anyε > 0, but with an inneffective constant. Nonetheless, this gives (L), but
it should be observed that we are forced to obtain (U) with a power savings—
nothing less suffices. On the other hand,anyδ > 0 is enough.

The proof of Siegel’s Theorem is based on the class number formula of Dirich-
let. Consider the Eisenstein series forΓ = SL(2,Z)

E(z, s) =
∑

γ∈Γ∞\Γ

(Im γz)s, Res> 1,

for which ζ(2s)E(z, s) has an analytic continuation with a simple pole ats = 1.
Now

ζ(2s)
∑

ZQ∈Λd

E(zQ, s) =
(
|d|
4

)s/2

L(s, χd)ζ(s), (12)

and taking residues ats= 1 gives the class number formula

H(d) = c|d|1/2L(1, χd).

Siegel’s Theorem is based on properties ofL(1, χd).

10. The Nonholomorphic Case (Duke, 1988)

The proof of Theorem B follows along similar lines as the proof of Theorem A, but
now we are forced to consider non-holomorphic modular forms. The first step, the
identification of the Weyl sums, is accomplished via the spectral decomposition
of the hyperbolic Laplacian on±Γ\H for Γ = SL(2,Z).

We are lead naturally to consider the following two types of sums

(E)
∑

zQ∈Λd
E(zQ, s) for Res= 1

2.

(C)
∑

zQ∈Λd
ϕ(zQ) for ϕ a Maass cusp form with∆ϕ = λϕ, ∆ = −y2(∂2

x + ∂
2
y).

We just saw that (E) ats= 1 leads to the class number formula which indeed
gives the same lower bound via Siegel’s Theorem that we must overcome. On
Res= 1

2 the problem becomes by (12) to estimate in terms of|d| for someδ > 0

L(1
2 + it, χd) � |d|1/4−δ. (13)

This is precisely what Burgess (Burgess, 1963) accomplished in 1963, when he
applied the RH for curves to get anyδ < 1

16. Note that we also use the estimate
|ζ(1+ 2it)| � log(|t| + 2)−1 of de la Valĺee Poussin.
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To treat (C), we must generalize the theta function construction of Theorem A.
This entails using a theta series for indefinite ternary forms, originally constructed
by Siegel. A “theta lift” found in this context by Maass allows one to write (C)
in terms of thedth Fourier coefficient of a Maass cusp form of weight1

2. An
important refinement of the Maass construction was given by Katok and Sarnak
(Katok and Sarnak, 1993) that identifies explicitly the eigenvalue dependence.

Although this is technically quite involved, conceptually it is not much dif-
ferent than the holomorphic case. One must replace the Petersson formula with a
Kuznetsov formula that relates sums of Kloorterman sums to the whole (weight1

2)
spectrum. This leads, with an appropriate choice of test functions, to the needed
general version of Iwaniec’s estimate (Proposition 8.2).

The Linnik problem for closed geodesics on±Γ\H mentioned before is proven
at the same time since the needed Weyl integrals occur as thedth coefficients of
the same half-integral weight form, where nowd > 0. One starts as before by
considering the role of the Eisenstein series in the Dirichlet class number formula
for real quadratic fields.

11. Transition to Subconvexity Bounds forL-Functions

The appearance of Burgess’s bound (13) strongly hints that the problem of es-
timating non-trivially the Fourier coefficients of 1

2-integral weight forms can be
converted to the problem of boundingL-functions on the critical line. This is the
case, with the paradigm being provided by Waldspurger’s Theorem. It turns out
that in order to obtain non-trivial estimates in this way one must go beyond the
convexity estimate of the Phragmen–Lindelöf Theorem, hence the name subcon-
vexity bounds (see (Iwaniec and Sarnak, 2000)). This has led to a number of
recent developments in the analytic theory ofL-functions, which is currently an
extremely active area.

After a series of papers by D. Friedlander and Iwaniec on GL(2)L-functions
(see (Duke et al., 2002) for references), various convolutionL-functions have been
considered with associated equidistribution problems. For subconvexity estimates
other important new contributions have been made by, among others, Bernstein,
Blomer, Conrey, Harcos, Kowalski, Liu, Michel, Reznikov, Sarnak, Vanderkam,
Venkatesh, Ye, (see e.g. (Michel, 2004)) for some recent references). The mixture
of ergodic methods with topics around subconvexity is an exciting new direction
being pursued by Lindenstrauss and Venkatesh.

12. An Application to Traces of Singular Moduli

I will end by describing a recent application of Theorem B to the asymptotics of
traces of singular moduli (Duke, 2006).
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Recall the classicalj-function onH

j(z) =
(1+ 240

∑∞
n=1σ3(n)qn)3

q II∞n=1(1− qn)24
= q−1 + 744+ 196884q+ . . .

whereq = e(z) = e2niz. Now j(γz) = j(z) for γ ∈ Γ and j(z) = j(E) is the j-
invariant of the elliptic curveE/C determinant byC/L, whereL = {m+nz; m,n ∈
Z}. For a negative discriminantd a pointzQ ∈ Λd is called a CM point sincej(zQ)
is the j-invariant of the elliptic curveE which has CM by the orderZ[zd]. In fact,
all such curves occur this way. The valuesj(zQ) are called singular moduli and
are known to be conjugate algebraic integers forzQ ∈ Λd. Let K = Q(

√
d) have

discriminant−D. The field:K
(
j(zd)

)
is Abelian overK and unramified outside of

(m) whered = −Dm2, called a ring class field. Ifd = −D is fundamental then
K
(
j(zd)

)
is the Hilbert class field ofK, that is the maximal unramified Abelian

extension ofK whose degree is the class numberh(d) of K (see (Cox, 1989)). Let
us restrict to the case of fundamentald. Here is a table of the first few values of
j(zd) (see Table I).

Consider Tr
(
j(zd)

)
=

∑
Λd

j(zQ), which ford < −4 fundamental is the sum of
the conjugates ofj(zd). Clearly Tr

(
j(zd)

)
∈ Z. We shall apply Theorem B to get a

precise asymptotic for Tr
(
j(zd)

)
. A crude asymptotic is

Tr j(zd) = (−1)deπ
√
|d| +O(eαπ

√
|d|)

for any fixedα > 1
2. This comes from an easy examination of the height of the

otherzQ’s in the sum and an estimation of their number. To state a much more
refined result, consider the exponential sum forc > 0 (later alias–Salié sum)

Sd(c) =
∑

x2≡d(c)

e(2x/c).

Note that12Sd(4) = (−1)d. The refinement is

TABLE I.

d j(zd)
−3 0
−4 123

−7 −153

−8 203

−11 −323

−15 1
2(−191025− 85995

√
5), the first irrational value
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Corollary. As d→ −∞ through fundamental discriminants

1
h(d)

Tr j(zd) − 1
2

∑
0<c<2

√
d

c≡0(4)

Sd(c)e4π
√
|d|/c

→ 720.

An equivalent form of this result was conjectured recently by Bruinier, Jenkins
and Ono. It is remarkable that the constant 720 is an integer!

To see that this result is a consequence of Theorem B, fixε > 0 and consider
for a smooth (C∞) test functionψ:R+ → [0,1] that is 0 on [0,1] and 1 on [1+
ε,∞), theΓ-invariant Poincaŕe series

hε(z) =
∑

γ∈Γ∞\Γ

ψ(Im γz)e(−γz).

HereΓ∞ consists of thoseγ ∈ Γ that act as translations. Clearly for Imz > 1+ ε
we have

hε(z) = e(−z)

and sof (z) = j(z) − hε(z) is C∞, Γ-invariant and bounded onH . By Theorem B
we have that asd→ −∞

1
h(d)

∑
z∈Λd

j(z) −
∑
z∈Λd

hε(z)

→ ∫
F

j(z) − hε(z) dµ.

Now, ∑
z∈Λd

hε(z) =
∑

Im zQ>1

e(−zQ) +O
(
εh(−d)

)
,

after applying again Theorem B to a suitable function.
Also, ∑

Im zQ>1

e(−zQ) = 1
2

∑
0<c<2

√
|d|

c≡0(4)

Sd(c)e4π
√
|d|/c

comes from the well known Gauss parametrization of roots ofx2 ≡ d(c).
Next we need to evaluate∫

Γ\H

j(z) − hε(z) dµ = lim
y→∞

∫
FY

j(z) dµ

whereFY = {z ∈ F ; Im z < Y} since
∫
FY

hε(z) dµ = 0. Lerche, Schellenkens,
and Warner showed how to evaluate such an integral using Stokes’s Theorem
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(see (Borcherds, 1998)). One uses the Eisenstein series of weight 2:E2(z) =
1− 24

∑∞
1 σ1(n)qn and its non-holomorphic modular version

Ẽ2(z) = E2(z) −
3
π

y−1.

Since

∂Ẽ2/∂z̄=
1
2

(
∂

∂x
+ i

∂

∂y

)(
−3
πy

)
=

3i

2πy2

anddz̄ dz= 2i dx dywe get by Stokes’s Theorem

3
π

∫
FY

j(z)
dx dy

y2
=

∫ 1/2+iY

−1/2+iY
j(x+ iY)Ẽ2(x+ iY) dx

= constant term ofjẼ2(x+ iY)

= 744− 2Y−
3
π

Y−1→ 720, asY→ ∞.

To see that
∫
FY

hε(z) dµ = 0, simply integrate the cut-off Poincaŕe series

hε,Y(z) =
∑

γ∈Γ∞\Γ

ψY(Im γz)e(−γz)

whereψY(y) =

{
ψ(y), y ≤ Y
0, y > Y

, which coincides withhε onFY. Thus,

∫
FY

hε dµ =
∫
F

hε,Y dµ = 0.
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Tóth,Á. (2005) On the evaluation of Salié sums,Proc. Amer. Math. Soc.133, 643–645 (electronic).


