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Abstract

Hecke proved the meromorphic continuation of a Dirichlet series asso-
ciated to the lattice points in a triangle with a real quadratic slope and
found the possible poles in terms of the fundamental unit. An analogous
result is proven for certain elliptical cones where now the poles are de-
termined by the spectrum of the Laplacian on an arithmetic Riemann
surface.

1 Some results of Hardy-Littlewood and Hecke

In the early 1920’s Hardy-Littlewood and Hecke studied the analytic properties
of a Dirichlet series whose summatory function counts lattice points in a triangle.
More precisely, for fixed q ∈ R+, consider the triangle in the x, y-plane whose
sides are given by qx2 = y2 and y = M. Letting

a(m) = aq(m) = #{x ∈ Z | qx2 < m2}

we clearly have that
∑

m<M a(m) is the number of lattice points in this triangle.
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The asymptotics of
∑

m<M a(m) as M →∞ is intimately connected to the
analytic properties of the associated Dirichlet series

φ(s) = φq(s) =
∑

m≥1

a(m)m−s.
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These properties are in turn determined by the diophantine properties of
√

q as
reflected in it simple continued fraction:

√
q = a0 +

1
a1+

1
a2+

· · · . (1)

If
√

q is rational the problem is trivial and otherwise let λ ∈ [1,∞] be defined
by

λ = lim sup
log qn+1

log qn
,

where qn is the denominator of the n-th convergent in (1):

pn

qn
= a0 +

1
a1+

1
a2+

· · · 1
an

.

Hardy and Littlewood (see [2] and [3]) showed that φ(s) is analytic for Re(s) >
1 − λ−1 except for a simple pole at s = 2 and that, if λ > 1, the line Re(s) =
1− λ−1 is a natural boundary. However, λ = 1 for almost all

√
q, in particular

when
√

q is algebraic (see [12] and [16]). Hardy and Littlewood conjectured that
when λ = 1 the imaginary axis is a natural boundary for φ(s) unless

√
q is a

quadratic irrational. This remains an important open problem.
Already in 1921 Hecke [4] showed that the situation when

√
q is a quadratic

irrational is truly different. Suppose, for instance, that q > 0 is a square free
integer with q ≡ 2 or 3 ( mod 4). The continued fraction expansion (1) of

√
q

is periodic starting at a1. If k is the smallest even period then let

η = pk−1 + qk−1
√

q. (2)

Hecke showed the following.

Theorem 1 (Hecke) The function φ(s) has a meromorphic continuation to the
whole s-plane with at most simple poles at s = 2 and s = −2`± 2πn

log η i with ` and
n nonnegative integers.

Let us recall Hecke’s method, which uses analysis in the real quadratic field
Q(
√

q). The integers O in Q(
√

q) are all elements of the form α = x0 + x1
√

q
where a, b ∈ Z. The conjugate of α is α′ = x0 − x1

√
q and α is called totally

positive if α, α′ > 0. Denote by O+ the set of totally positive elements in O.
The units in O+ form an infinite cyclic group generated by η from (2), which is
called the fundamental totally positive unit for Q(

√
q) (see e.g. p.64. of [21]).

Hecke’s idea is to observe that the function

φ(s, x) = 2s
∑

α∈O+

(αex + α′e−x)−s, (3)

specializes at x = 0 to φ(s). Due to the action of the totally positive units on
O+, the function φ(s, x) is periodic in x. It is also even, hence it has a Fourier
cosine expansion:

φ(s, x) = c0(s) + 2
∑
n>0

cn(s) cos(2πnx/ log η). (4)
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Here the Fourier coefficient cn(s) is given by the integral

cn(s) =
1

log η

∫ log η

0

cos(2πnx/ log η)φ(s, x)dx.

Substituting (3) in this integral, replacing α by η`α and α′ by η−`α′ and exe-
cuting the summation over ` ∈ Z gives

cn(s) =
∑
(α)

α∈O+

1
log η

∫ ∞

−∞
cos(2πnx/ log η)(αex + α′e−x)−sdx,

where the sum is now over non-associated totally positive integers α. This inte-
gral may be evaluated leading to

cn(s) =
2s−1

log η

Γ( s
2 + πin

log η )Γ( s
2 − πin

log η )

Γ(s)
ζ+( s

2 , un)

where
ζ+(s, un) =

∑
(α)

α∈O+

un(α)N(α)−s,

with un(α) = cos
(
πn log |α/α′|

log η

)
and N(α) = αα′. Write ζ+(s) = ζ+(s, u0).

It follows from Hecke’s fundamental results about Hecke ζ-functions with
Grössencharacters that ζ+(s, un) is entire of order 1 unless n = 0, in which case
(s−1)ζ+(s) is. Furthermore, by standard analysis using the functional equations
for the Hecke ζ-functions, we may deduce that on any compact subset in s that
does not contain any of the poles of any cn(s) the series

φ(s) =
√

πΓ( s
2 )ζ+( s

2 )
log η Γ( s+1

2 )
+

2s

log η

∑

n≥1

Γ( s
2 + πin

log η )Γ( s
2 − πin

log η )

Γ(s)
ζ+( s

2 , un) (5)

converges uniformly, giving the theorem.
It is also clear that one may read off the residues from this expansion in

terms of special values of ζ+(s, un). At s = 2 the residue is 4/
√

q. Using the
Kronecker limit formula it is possible to derive the following remarkable formula
for the residue of φ(s) at s = 0 :

1
6 log η

(a1 − a2 + a3 − · · ·+ ak), (6)

where aj are the partial quotients from (1) (see [19, p.183] and [9]).

2 An analogue for cones.

In this paper we shall generalize Theorem 1 to certain right elliptical cones in
R3. Fix q, r ∈ R+ and consider the cone in (x1, x2, y) with y > 0 given by
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qx2
1 + rx2

2 = y2 and y = M. Letting now

a(m) = aq,r(m) = #{(x1, x2) ∈ Z2 | qx2
1 + rx2

2 < m2} (7)

we have that
∑

m<M a(m) is the number of lattice points in this cone.
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We are interested in the analytic properties of the Dirichlet series

φ(s) = φq,r(s) =
∞∑

m=1

a(m)m−s. (8)

Suppose that q and r are positive co-prime square-free integers. We may asso-
ciate to them a co-finite subgroup Γ of PSL(2,R) consisting of transformations
represented by those matrices

(
x0 + x1

√
q

√
r(x2 + x3

√
q)√

r(x2 − x3
√

q) x0 − x1
√

q

)
(9)

of determinant 1 having each xi integral. Let H be the upper half plane. It is
well known that Γ\H is a compact Riemann surface if and only if Γ contains no
elliptic or parabolic transformations. This is equivalent to

|qx2
1 + rx2

2 − qrx2
3| < 2 (10)

having no non-trivial integral solutions. For simplicity, we shall assume that
this holds. The Gauss-Bonnet formula then gives

v = vol(Γ\H) =
∫

Γ\H

dx dy

y2
= 4π(g − 1), (11)

where g is the genus of Γ\H. The volume, hence g, is computed explicitly in
terms of q and r in [1].

The Laplacian

4 = y2(
∂2

∂x2
+

∂2

∂y2
)

on the compact Riemann surface Γ\H has purely discrete spectrum

0 = λ0 < λ1 ≤ λ2 . . . (12)
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distributed according to Weyl’s law:

#{n | λn ≤ x} = (g − 1)x + O(
√

x). (13)

It is conjectured that λ1 ≥ 1
4 , which would follow from the Selberg eigenvalue

conjecture via the Jacquet-Langlands correspondence ([11], see also [8] and [20]).
The best known result in this direction is due to Kim and Sarnak [14]:

λ1 ≥ 975
4096 = .238 . . . .

We write as usual λn = 1
4 + r2

n. The following is the main result of this paper.

Theorem 2 The function φ(s) has meromorphic continuation to the whole s-
plane with at most simple poles at s = 3, s = 1 and s = −2` + 1

2 ± irn when
rn 6= 0, and at most double poles at −2`+ 1

2 . Here n is any positive integer and
` any nonnegative integer.

Infinitely many examples satisfying the condition that (10) has no non-trivial
integral solutions occur by taking r a prime ≡ 1 modulo 4 and q a quadratic
non-residue modulo r. For these examples [1] yields, after some calculation, a
simple formula for the genus.1 In case q is odd we have

g =
1
4
(r + 1)

∏

p|q

(
p +

(
q

p

))
+ 1,

while a similar formula holds when q is even. For instance, Γ\H has genus 7
when q = 3 and r = 5.

3 The spectral expansion

The proof of Theorem 2 uses analysis in the quaternion algebra consisting of all
matrices in (9) with rational xi, clearly a division algebra under our assumptions.
Let O be the order consisting of those matrices with integral xi and O+ be the
positive definite matrices in O:

O+ =
{

α =
(

x0 + x1
√

q x2
√

r
x2
√

r x0 − x1
√

q

)
; x2

0 − qx2
1 − rx2

2 > 0, x0 > 0
}

. (14)

The group O∗ of proper units of O consists of those matrices in O with deter-
minant 1. Clearly γ ∈ O∗ acts on α ∈ O+ by α 7→ α[γ] ≡ tγαγ, where tγ is
the transpose of γ. We shall make use of the well known fact that the set of
α ∈ O+ with a given determinant splits into finitely many classes modulo this
action. Also, we have that Γ = O∗/± 1, where Γ is as in (9).

1This calculation is complicated by the fact that the relevant order in the associated quater-
nion algebra is not an Eichler order.
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In order to define the analogue of (3), we use the realization of the upper half
plane H as the space SP2 of all 2 by 2 positive definite matrices of determinant
one, where z ∈ H is identified with

z =
(

y−1 0
0 y

)[(
1 −x
0 1

)]
=

(
1 0
−x 1

)(
y−1 0
0 y

)(
1 −x
0 1

)
∈ SP2.

It can be checked that g ∈ PSL(2,R) acting on z ∈ SP2 by z 7→ z[g] corresponds
to the usual linear fractional action of g−1 on x + iy ∈ H.

Define for z ∈ SP2 and Re(s) sufficiently large

φ(s, z) = 2s
∑

α∈O+

(tr α∗z)−s, (15)

where α∗ = (det α)α−1. Our interest in φ(s, z) stems from the easily seen fact
that φ(s, I) = φ(s) from (8). For fixed s with Re(s) large enough the series
(15) and all of its partial derivatives in x and y up to the second order converge
absolutely and uniformly for z in a fundamental domain for Γ. This follows
from the next elementary lemma.

Lemma 1 For a fixed T > 0 and positive definite
(

y1 y2

y2 y3

)
,

the region in (x0, x1, x2) ∈ R3 with x0 > 0 defined by the conditions

x2
0 − qx2

1 − rx2
2 ≥ 0 and x0(y1 + y3) + x1

√
q(y3 − y1)− 2x2

√
ry2 ≤ T

is bounded.

Proof: First make the change of variables

x0 7→ x0, x1 7→ q−1/2x1 and x2 7→ r−1/2x2,

which does not change the boundedness condition. It leads to the two conditions

x2
0 − x2

1 − x2
2 ≥ 0 and x0(y1 + y3) + x1(y3 − y1)− 2x2y2 ≤ T

for which the boundedness is insured if the plane from the second inequality
intersects the circular cone from the first inequality in an ellipse. This is equiv-
alent to the condition cos θ > 1√

2
where θ is the angle between the normal to

the plane and the x0-axis. But

cos θ =
y1 + y3√

2y2
1 + 4y2

2 + 2y2
3

>
1√
2

since y1, y3 > 0 and y2
2 < y1y3. ¤
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Since clearly φ(s, z) = φ(s, z[γ]) for γ ∈ Γ, we have that φ(s, z) defines a C2

function on the compact Riemann surface Γ\H. The Hilbert space L2(Γ\H),
with respect to the (normalized) invariant measure dµ = dµ(z) = v−1dx dy/y2,
has an orthonormal basis consisting of real eigenfunctions un for the Laplacian

4un + λnun = 0,

where λn are in (12). The following result may now be deduced from [5].

Proposition 1 For fixed s with Re(s) sufficiently large we have the identity

φ(s, z) =
∑

n≥0

cn(s)un(z), where cn(s) =< φ(s, z), un(z) >, (16)

the convergence being absolute and uniform for z ∈ Γ\H. In particular, if Re(s)
is sufficiently large,

φ(s) =
∑

n≥0

cn(s)un(I).

4 The spectral coefficients

To proceed we must compute the spectral coefficients cn(s) from (16). Suppose
Re(s) is sufficiently large. We have

cn(s) =< φ(s, z), un(z) >= 2s

∫

Γ\H

∑

α∈O+

(trα∗z)−sun(z)dµ

= 2s
∑

γ∈Γ

∫

Γ\H

∑

(α)

(tr α[γ]∗z)−sun(z)dµ,

where the sum over (α) runs over a complete set of representatives of α ∈
O+ modulo the action α 7→ α[γ] by γ ∈ Γ, using that Γ contains no elliptic
transformations. Since γ−1 runs over all of Γ as γ does, using that un(z) =
un(z[γ]) we get

cn(s) = 2s
∑

γ∈Γ

∫

Γ\H

∑

(α)

(trα∗z[γ])−sun(z[γ])dµ = 2s

∫

H

∑

(α)

(tr α∗z)−sun(z)dµ,

where in the last equality we have made a change of variable and unfolded the
integral. Thus we have

cn(s) = 2s
∑

(α)

(det α)−
s
2

∫

H
(trα−1

0 z)−sun(z)dµ (17)

where α0 = α/
√

det α ∈ SP2. Now the kernel function k(w, z) = ( 1
2 trw−1z)−s

on SP2 is clearly a point pair invariant: k(w[g], z[g]) = k(w, z) for any g ∈
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PSL(2,R). In fact, a calculation shows that 1
2 tr w−1z = cosh ρ(z, w), where

ρ(z, w) is the hyperbolic distance from z to w. We conclude that
∫

H
k(w, z)un(z)dµ(z) = λn(s)un(w)

where λn(s) is the Selberg transform of k(w, z) (see [10]). Thus from (17)

cn(s) = λn(s)
∑

(α)

(det α)−
s
2 un(α0) = λn(s)ζ+( s

2 , un), (18)

where
ζ+(s, un) =

∑

(α)

un(α0)(det α)−s. (19)

Before discussing the analytic properties of ζ+(s, un) let us compute λn(s).
Since Im(z)1/2+irn has the same eigenvalue for 4 on H as un we have

λn(s) Im(w)1/2+irn =
∫

H
(tr(w−1z)/2)−sIm(z)1/2+irndµ.

If w = u + iv make the change of variables z 7→ z[g] where

g =
(

v1/2 0
0 v−1/2

)(
1 0
u 1

)

to get

2−sλn(s) =
∫

H
(tr z)−s Im(z)1/2+irndµ = v−1

∫ ∞

0

∫ ∞

−∞
(x2+y2+1)−sys+irn−3/2dxdy

which is readily evaluated to give

λn(s) =
2s−1

√
π

v
Γ( s−1/2+irn

2 )Γ( s−1/2−irn

2 )
Γ(s)

.

Thus we have proven the following.

Proposition 2 For fixed s with Re(s) sufficiently large we have the identity for
the spectral coefficients cn(s) from Proposition 1:

cn(s) =
2s−1

√
π

v
Γ( s−1/2+irn

2 )Γ( s−1/2−irn

2 )
Γ(s)

ζ+( s
2 , un) (20)

where ζ+(s, un) is defined in (19) and v in (11).
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5 The Maass ζ-function

In order to finish the proof of Theorem 2, we must establish some needed analytic
properties of the Maass ζ-function

ζ+(s, un) =
∑

m≥1

hn(m)m−s, where hn(m) =
∑
(α)

det α=m

un(α0). (21)

Write ζ+(s) = ζ+(s, u0) =
∑

m≥1 h0(m)m−s and observe that h0(m) is a non-
negative integer. The function ζ+(s) was introduced by Siegel [18], who showed
that it is entire except for a simple pole at s = 3/2 with residue v/(2

√
qr), and

satisfies a functional equation. In general, ζ+(s, un) was first studied by Maass
in [15] where he established, among other things, that it is a meromorphic func-
tion. Later Hejhal [6, 7] generalized and strengthened certain of the results of
Maass. We shall quote the needed results from [6, 7].

A straightforward calculation shows that Γ from (9) maps under W, defined
in [6, p.413], to a subgroup of finite index in Grq, defined in [6, p.414]. Also,
ζ+(s, un) is the same, up to a simple factor, as Fa(s;S) from [6, p.416]. Theorem
2 of [6] then implies that ζ+(s, un) converges absolutely for Re(s) > 3/2 and
has analytic continuation to the entire s-plane (except at s = 3/2 when n = 0).
It also satisfies a functional equation of the form

(2π)2sζ+(3/2− s, un) =
Γ(s− 1/2+irn

2 )Γ(s− 1/2−irn

2 )
Γ( 1

2 + s)Γ( 1
2 − s)

ψ1(s, un)

+
Γ(s− 1/2+irn

2 )Γ(s− 1/2−irn

2 )

Γ( 1/2+irn

2 )Γ( 1/2−irn

2 )
ψ2(s, un), (22)

where ψ1(s, un) and ψ2(s, un) are Dirichlet series of the same type that are
absolutely convergent for Re(s) > 3/2. Furthermore, it is shown in [7, (7.1)]
that in a fixed vertical strip S

ζ+(s, un) ¿n,S,c ec|Im(s)| (23)

for any c > π/2.
Since we must establish convergence of the spectral expansion for s outside

of the region of convergence of ζ+(s, un), we will need to estimate ζ+(s, un)
uniformly in the eigenvalue λn. By [17] we have

sup
z∈Γ\H

|un(z)| ¿ λ1/4
n . (24)

It follows from (21), (24) and [6, (4.1)] that
∑

m≤x

|hn(m)| ¿ λ1/4
n x3/2.

Similarly, from [6, (4.1)] the same bound holds for the partial sums of the
coefficients of ψ1(s, un) and ψ2(s, un). Thus ζ+(s, un), ψ1(s, un), and ψ2(s, un)
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are all¿ λ
1/4
n for Re(s) ≥ 2, say. Now a standard argument using (22), (23), well

known properties of the gamma function and the Phragmen-Lindelöf theorem
proves the second statement in the following.

Proposition 3 The Maass ζ-function ζ+(s, un) in entire except when n = 0,
where it has only a simple pole at s = 3/2 with residue v/(2

√
qr). Furthermore,

for s in any compact subset of the s-plane, we have for n > 0 that

ζ+(s, un) ¿ λA
n ,

where A is a positive constant.

6 The final formula

We now may complete the proof of Theorem 2. We have from Propositions 1
and 2 that if Re(s) is sufficiently large,

φ(s) =
2π

v
ζ+( s

2 )
s− 1

+
2s−1

√
π

v

∑

n≥1

Γ( s−1/2+irn

2 )Γ( s−1/2−irn

2 )
Γ(s)

ζ+( s
2 , un)un(I).

By Proposition 3, (24) and Weyl’s law (13) we see that this formula provides the
needed meromorphic continuation of φ(s) since it is absolutely and uniformly
convergent on any compact subset in the s-plane not containing any of the poles.

As with Hecke’s formula (5), one may read off the residues of the poles; the
poles s = 3 and s = 1 both occur in the first term. The residue at s = 3 is π√

qr ,
while that at s = 1 may be written

(2g − 2)−1ζ+(1/2).

In view of (6), it might be interesting to determine ζ+(1/2) in elementary terms.

Acknowledgement: We thank the referees for their helpful suggestions.
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