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ABSTRACT. We define traces associated to a weakly holomorphic modular form f of ar-
bitrary negative even integral weight and show that these traces appear as coefficients of
certain weakly holomorphic forms of half-integral weight. If the coefficients of f are inte-
gral, then these traces are integral as well. We obtain a negative weight analogue of the
classical Shintani lift and give an application to a generalization of the Shimura lift.

1. INTRODUCTION

Recently there has been a resurgence of interest in the classical theory of singular mod-
uli, these being the values of the modular j-function at quadratic irrationalities. This
resurgence is due largely to the influential papers of Borcherds [1], [2] and Zagier [26].
The present paper arose from a suggestion made at the end of [26] to extend some of the
results given there on traces of singular moduli to higher weights. One such generaliza-
tion has been given recently by Bringmann and Ono [3], who provide an identity for the
traces associated to certain Maass forms in terms of the Fourier coefficients of half-integral
weight Poincaré series. However, it does not seem to be known when these traces are inte-
gral or even rational. Here we will identify the traces associated to a weakly holomorphic
form f of negative integral weight with the coefficients of certain weakly holomorphic
forms of half-integral weight and show that these coefficients are integral when the coeffi-
cients of f are integral. We will use this identification to obtain a negative weight analogue
of the classical Shintani lift. We also give an application to Borcherds’ generalization of
the Shimura lift to weakly holomorphic modular forms.

Recall that a weakly holomorphic modular form of weight k, where k ∈ 2Z, is a holo-
morphic function f on the upper half-plane H that satisfies

(
f |kγ

)
(τ) = (cτ + d)−kf(aτ+b

cτ+d
) = f(τ)

for all γ = ( a b
c d ) ∈ Γ = PSL(2,Z) and that has a q-expansion f(τ) =

∑
n a(n)qn with

a(n) = 0 for all but finitely many n < 0; here, as usual, q = e(τ) = e2πiτ . Let M !
k denote

the vector space of all weakly holomorphic modular forms of weight k. Similarly, for
k = s + 1/2 with s ∈ Z let M !

k denote the space of holomorphic functions on H that
transform like θ2k under Γ0(4), have at most poles in the cusps, and have a q-expansion
supported on integers n with (−1)sn ≡ 0, 1 (mod 4). Here, as usual, θ(τ) =

∑
n∈Z qn2 . For

any k let Mk ⊂ M !
k denote the subspace of holomorphic forms and Sk ⊂ Mk the subspace

of cusp forms.
In this paper d is always an integer with d ≡ 0, 1 (mod 4) and D is always a fundamental

discriminant (possibly 1). Suppose that dD < 0 and that F is a Γ-invariant function on H.
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Define the twisted trace

(1) Trd,D(F ) =
∑

Q

w−1
Q χ(Q)F (τQ),

where the sum is over a complete set of Γ-inequivalent positive definite integral quadratic
forms Q(x, y) = ax2 + bxy + cy2 with discriminant dD = b2 − 4ac, and

(2) τQ =
−b +

√
dD

2a
∈ H

is the associated CM point. Here wQ = 1 unless Q ∼ a(x2 + y2) or Q ∼ a(x2 + xy + y2), in
which case wQ = 2 or 3 respectively, and

(3) χ(Q) = χ(a, b, c) =

{
χD(r), if (a, b, c,D) = 1 and Q represents r, where (r,D) = 1;
0, if (a, b, c,D) > 1,

where χD is the Kronecker symbol. It is known that χ is well–defined on classes, that χ
restricts to a real character (a genus character) on the group of primitive classes, and that
all such characters arise this way.

For the usual j-function j = E3
4/∆ ∈ M !

0 with Fourier expansion

j(τ) = q−1 + 744 + 196884q + 21493760q2 + . . . ,

it is classical that the value j(τQ) is an algebraic integer in an abelian extension ofQ(
√

dD).
Let j1 = j−744. Zagier showed in [26] that for a fundamental discriminant D 6= 1 we have

q−|D| +
∑

d>0

d−
1
2 Trd,D(j1)q

|d| ∈ M !
1/2 if D < 0,

q−|D| −D− 1
2

∑

d<0

Trd,D(j1)q
|d| ∈ M !

3/2 if D > 0,

and that both forms have integral Fourier coefficients. For instance, when D = −3 and
D = 5 we have the two weakly holomorphic forms

q−3 − 248q + 26752q4 − 85995q5 + · · · ∈ M !
1/2 and

q−5 + 85995q3 − 565760q4 + 52756480q7 + · · · ∈ M !
3/2,

and Tr5,−3(j1) = Tr−3,5(j1) = j(1+
√−15
2

)− j(1+
√−15
4

) = −85995
√

5.
In this paper we will give such a result when j1 is replaced by a function f of negative

weight. To state it, first define the Maass raising operator ∂k in τ = x + iy:

(4) ∂k = D − k

4πy
, where D =

1

2πi

d

dτ
= q

d

dq
.

Now ∂k(f |kγ) = (∂kf)|k+2γ for any γ ∈ PSL(2,R). Thus, if f ∈ M !
2−2s for s ∈ Z+, the

function ∂s−1f is Γ-invariant, where

(5) ∂s−1 ≡ (−1)s−1∂−2 ◦ ∂−4 ◦ · · · ◦ ∂4−2s ◦ ∂2−2s.

After Maass we know that ∂s−1f is an eigenfunction of the Laplacian

∆ = −y−2
(

∂2

∂x2 + ∂2

∂y2

)
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with eigenvalue s(1 − s), so ∂s−1f is a weak Maass form (see e.g. [6, p.162] for a precise
definition). As was shown in special cases in [26] by a method that readily generalizes,
∂s−1f is a rational function of j and h = E∗

2E4E6/∆, where

E∗
2(τ) = 1− 24

∑
n≥1

σ(n)qn − 3

πy

(
σ(n) =

∑

m|n
m

)

is the nonholomorphic weight 2 Eisenstein series. For a CM point like τQ given in (2), it
was shown by Ramanujan that h(τQ) is algebraic [22, eq. (23) p. 33]. More precisely,

h(τQ) ∈ Q(j(τQ))

(see [18, Thm. A1, p. 114].) Using this, we can deduce the remarkable fact that for any
f ∈ M !

2−2s with s ≥ 1 and with rational Fourier coefficients, the “singular” value of the
weak Maass form ∂s−1f(τQ) is algebraic. We are thus motivated to study Trd,D(∂s−1f) for
such f .

For D a fundamental discriminant let ŝ = s if (−1)sD > 0 and ŝ = 1− s otherwise. It is
also convenient to set

(6) Tr∗d,D(f) = (−1)b
ŝ−1
2
c |d|− ŝ

2 |D| ŝ−1
2 Trd,D(∂s−1f).

Suppose that f ∈ M !
2−2s for s ≥ 2 has Fourier coefficients a(n). For D fundamental, define

the Dth Zagier lift of f to be

ZDf(τ) =
∑
m>0

a(−m)ms−ŝ
∑

n|m
χD(n)nŝ−1q−

m2|D|
n2 + 1

2
L(1− s, χD)a(0) +

∑

d: dD<0

Tr∗d,D(f)q|d|.

The linear map f 7→ ZD(f) is a negative weight analogue of the Shintani lift on integral
weight cusp forms. This follows from our main result, whose proof will be completed in
Section 5.

Theorem 1. Suppose that f ∈ M !
2−2s for an integer s ≥ 2. If D is a fundamental discriminant

with (−1)sD > 0, we have that ZDf ∈ M !
3/2−s, while if (−1)sD < 0, then ZDf ∈ M !

s+1/2. If f

has integral Fourier coefficients, then so does ZDf .

Here we will not treat the case s = 1, which requires special considerations and which
can be dealt with by the methods of [26]. Furthermore, when s = 2, 3, 4, 5, 7, Theorem 1
can also be deduced from results of [26]. The first new example occurs when s = 6 and
D = 1, where we have the pair

f(τ) = E14(τ)
∆(τ)2

=q−2 + 24q−1 − 196560− 47709536 q + · · · ∈ M !
−10

Z1f(τ) =q−4 + 56 q−1 + 390 + 15360 q3 + 42264 q4 + 615240 q7 + · · · ∈ M !
−9/2.

Here −1
2
ζ(−5) · 196560 = 390 and the first few values of Tr∗d,1(f) are

3−4∂5f(1+
√−3
2

) = 15360 2−7∂5f(i) = 42264 7−3∂5f(1+
√−7
2

) = 615240.

Similarly, when D = −3 we have

Z−3f(τ) = 211q−12 − 8q−3 − 15360q − 53319598080q4 + · · · ∈ M !
13/2.

The main new difficulty in proving Theorem 1 comes from the existence of cusp forms
in M !

2s. The method of Poincaré series adapts nicely to handle it. A key dividend of the
method is the last statement of Theorem 1, showing that the integrality of coefficients is
preserved under the lift.
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Remarks:
• It follows from Theorem 1 that if (−1)sD > 0 then the image ZD(f) ∈ M !

3/2−s is
determined by its principal part, hence by the principal part of f . Furthermore,
a(0) is divisible by the denominator of each of the L-values 1

2
L(1− s, χD), provided

that the Fourier coefficients of f are integral. Using well-known properties of the
generalized Bernoulli numbers, one can reproduce the divisibility properties that
follow from work of Siegel [23, pp. 254–256]. On the other hand, if (−1)sD < 0
then 1

2
L(1− s, χD) = 0.

• It can be shown that the Zagier lift is compatible with the Hecke operators. For
more details, see the end of Section 5.

• Using a theta lift, Bruinier and Funke [4] have generalized Zagier’s result in various
other ways, for instance to higher levels, where the existence of cusp forms in the
dual weight is also a complication (see also [11]).

As another application of these methods we will give a simple proof of a basic property
of the Shimura lift for weakly holomorphic modular forms. For

g(τ) =
∑

n

b(n)qn ∈ M !
s+ 1

2

with s ∈ Z+ and fundamental D with (−1)sD > 0, define the Dth Shimura lift of g by

(7) SD g(τ) = 1
2
L(1− s, χD)b(0) +

∑
m>0

( ∑

n|m
χD(n)ns−1b

(
m2|D|

n2

))
qm.

When g is holomorphic this is the usual definition. We will repeatedly use the basic fact
that SDg ∈ M2s if g ∈ Ms+1/2 (see [16]). Recall that a CM point is a point in H of the form
−b+

√
b2−4ac

2a
for integral a, b, c. The proof of the following result will be completed in Section

6. In the case D = 1 it is due to Borcherds and follows from a special case of Theorem 14.3
in [2] (see Example 14.4).

Theorem 2. For g ∈ M !
s+ 1

2

with s ≥ 2 and D a fundamental discriminant with (−1)sD > 0,
SD g is a meromorphic modular form of weight 2s for Γ whose possible poles are of order at most s
and occur at CM points.

2. WEAKLY HOLOMORPHIC FORMS

In this section we will define a canonical basis for the space M !
k for any k = s + 1/2 with

s ∈ Z in which all basis elements have integral Fourier coefficients. Then we will construct
forms in M !

k when s ≥ 2 using Poincaré series.
We begin by recalling the canonical basis for M !

2s defined in [9] for any s ∈ Z. Write
2s = 12` + k′ with uniquely determined ` ∈ Z and k′ ∈ {0, 4, 6, 8, 10, 14}, so that if ` ≥ 0,
then ` is the dimension of the space S2s of cusp forms of weight 2s. For every integer
m ≥ −`, there exists a unique f2s,m ∈ M !

2s with a q-expansion of the form

f2s,m(τ) = q−m +
∑

n>`

a2s(m,n)qn,

and together they form a basis for M !
2s. The basis element f2s,m can be given explicitly in

the form
f2s,m = f2sP (j),
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where f2s = f2s,−` = ∆`Ek′ and P is a polynomial of degree m + `. As shown in [9], the
basis elements have the following generating function:

(8)
∑

m≥−`

f2s,m(z)qm =
f2s(z)f2−2s(τ)

j(τ)− j(z)
= −

∑

m≥`+1

f2−2s,m(τ)rm,

where r = e(z). It follows from this that the coefficients a2s(m,n) are integral and satisfy
the duality relation

(9) a2s(m,n) = −a2−2s(n,m).

In order to formulate a similar result for M !
k when k = s+1/2 with s ∈ Z, let ` be defined

by 2s = 12` + k′ as above. By the Shimura correspondence given in [14] one finds that the
maximal order of a nonzero f ∈ M !

k at i∞ is

A =

{
2`− (−1)s, if ` is odd;
2`, otherwise.

If B < A is the next admissible exponent we can construct functions in M !
k of the form

fk(τ) = qA + O(qB+4) and f ∗k (τ) = qB + O(qB+4).

Writing s = 12a + b, where b ∈ {6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19}, fk and f ∗k can be
given explicitly in the form

fk(τ) = ∆(4τ)afb+1/2(τ) and f ∗k (τ) = ∆(4τ)af ∗b+1/2(τ),

where the forms fb+1/2, f
∗
b+1/2 ∈ Mb+1/2 are given in the appendix and have integral Fourier

coefficients. Using them it is easy to construct a unique basis for M !
k consisting of functions

of the form

(10) fk,m(τ) = q−m +
∑
n>A

ak(m,n)qn,

where m ≥ −A satisfies (−1)s−1m ≡ 0, 1 (mod 4). Here fk,−A = fk and fk,−B = f ∗k . This
can be done recursively; fk,m(τ) is obtained by multiplying fk,m−4(τ) by j(4τ) and then
subtracting a suitable linear combination of the forms fk,m′(τ) with m′ < m. We also have
the following generating function, whose proof is similar to Zagier’s proof of the k = 1/2
case in [26]:

(11)
∑
m

fk,m(z)qm =
fk(z)f ∗2−k(τ) + f ∗k (z)f2−k(τ)

j(4τ)− j(4z)
= −

∑
m

f2−k,m(τ)rm.

By (11) and the fact that fk and f ∗k have integral Fourier coefficients, we have the following
result.

Proposition 1. The Fourier coefficients ak(m,n) defined in (10) are integral and satisfy the duality
relation

(12) ak(m,n) = −a2−k(n,m)

for all m,n ∈ Z.

Another way to construct weakly holomorphic forms is by Poincaré series. In this paper
we only need them for k = s + 1/2 where s ≥ 2. Set j(γ, τ) = θ(γτ)/θ(τ) for γ ∈ Γ0(4). For
m ∈ Z define the Poincaré series

Pk,m(τ) =
∑

γ∈Γ∞\Γ0(4)

e(mγτ)j(γ, τ)−2k,
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where Γ∞ is the subgroup of translations in Γ0(4). For k ≥ 5/2 this is absolutely convergent
and represents a weakly holomorphic form of weight k for Γ0(4), but it is not in M !

k since
its Fourier coefficients are not supported on n with (−1)sn ≡ 0, 1 (mod 4). When m = 0
the Poincaré series is an Eisenstein series that Cohen [7] projected to a form in Mk and
whose Fourier coefficients are expressed in terms of the values of Dirichlet L-functions
at 1 − s. When m > 0, Kohnen (see [15]) showed how to obtain in this way cusp forms
in Sk. It was observed in [5] that a similar procedure works for m < 0. Petersson [21]
had explicitly computed the Fourier expansions of Pk,m in terms of Bessel functions and
Kloosterman sums, and the projections gk,m of Pk,m to M !

k have Fourier expansions that are
simple modifications of these. To give them, for m,n ∈ Z and c ∈ Z+ with c ≡ 0 (mod 4)
let

(13) Kk(m, n; c) =
∑

a(mod c)

(
c
a

)
ε2k

a e
(

ma+na
c

)

be the Kloosterman sum, where
(

c
a

)
is the extended Legendre symbol and

εa =

{
1 if a ≡ 1 (mod 4)

i if a ≡ 3 (mod 4).

Also, let δodd(n) = 1 if n is odd and δodd(n) = 0 otherwise.

Proposition 2. Suppose that k = s + 1/2 where s ≥ 2. Then, for any nonzero integer m with
(−1)sm ≡ 0, 1 (mod 4), there exists a form gk,m ∈ M !

k with Fourier expansion

gk,m(τ) = qm +
∑
n≥1

(−1)sn≡0,1(4)

bk(m,n)qn

where for (−1)s ≡ 0, 1 (mod 4) the coefficient bk(m,n) is given explicitly by the absolutely con-
vergent sum

bk(m,n) = 2πi−k
∣∣ n
m

∣∣ k−1
2

∑

c≡0(4)

c>0

(
1 + δodd( c

4
)
)
c−1Kk(m,n; c) ·





Ik−1(
4π
√
|mn|
c

), if m < 0;

Jk−1(
4π
√
|mn|
c

), if m > 0.

A similar formula holds when m = 0 that can be further evaluated to give Cohen’s
formulas. Also, a modified version holds when s = 1 (see [5]).

Of course, gk,−m can be expressed in terms of the basis elements fk,m. If there are no
nonzero cusp forms in M2s, then gk,−m = fk,m for all m. In general, however,

(14) gk,−m − fk,m ∈ Sk

is a nonzero cusp form. It seems likely that the Fourier coefficients bk(m,n) of gk,m are
irrational, even transcendental, in general.

3. WEAK MAASS FORMS

Next we will show that for f ∈ M !
2−2s with s ∈ Z+, the function ∂s−1f is a weak Maass

form and compute its Fourier expansion. Recall that ∂s−1 was defined in (5). Then we
express ∂s−1f2−2s,m in terms of certain Poincaré series. We need the following result which,
in essence, is due to Maass (see also [17, p. 250] ).



INTEGRAL TRACES OF SINGULAR VALUES OF WEAK MAASS FORMS 7

Proposition 3. Suppose that f(τ) =
∑

n a(n)qn ∈ M !
2−2s for integral s ≥ 1. Then ∂s−1f is a

weak Maass form for Γ with eigenvalue s(1− s). Explicitly, we have

∂s−1f(τ) = 2πy
1
2

∑
n>0

a(−n)ns− 1
2 Is− 1

2
(2πny)e(−nx)(15)

+ (−1)s−1
(
π

1
2
−sΓ(s− 1

2
)y1−sa(0) + 2y

1
2

∑

n 6=0

a(n)|n|s− 1
2 Ks− 1

2
(2π|n|y)e(nx)

)
,

where I and K are the usual Bessel functions.

Proof. By induction it is readily shown that for n > 0

∂s−1e(−nτ) = ns−1

s−1∑
m=0

(s− 1 + m)!

m!(s− 1−m)!
(−4πny)me(−nτ).

Standard formulas for Bessel functions with half-integral parameter (see e.g. [12]) yield

∂s−1e(−nτ) =2 ns− 1
2 y

1
2

(
πIs− 1

2
(2πny) + (−1)s−1Ks− 1

2
(2πny)

)
e(nx)

∂s−1e(nτ) =2(−1)s−1 ns− 1
2 y

1
2 Ks− 1

2
(2πny)e(nx),

∂s−1(1) =(−1)s−1π
1
2
−sΓ(s− 1

2
)y1−s.

These formulas easily give (15), thus finishing the proof of Proposition 3. ¤

We next express the weak Maass form ∂s−1f2−2s,m associated to the basis element f2−2s,m

in terms of certain Poincaré series, when s ≥ 2 and 2s = 12`+ k′ as before. For m ∈ Zwith
m 6= 0 consider the Poincaré series (see [20])

(16) Fm(τ, s) = 2π|m|s− 1
2

∑

γ∈Γ∞\Γ
e(m Re γτ)(Im γτ)

1
2 Is− 1

2
(2π|m| Im γτ),

which converges absolutely for Re s > 1. Here Γ∞ is the subgroup of translations in Γ.
Clearly Fm(γτ, s) = Fm(τ, s) for γ ∈ Γ and ∆Fm(τ, s) = s(1− s)Fm(τ, s).

Proposition 4. For integral s ≥ 2 we have for m ≥ ` + 1

(17) ∂s−1f2−2s,m(τ) = F−m(τ, s) +
∑

0<n<`+1

a2−2s(m,−n)F−n(τ, s).

Proof. To prove Proposition 4, we need the Fourier expansion of Fm. This can be found,
for instance, in [10]. Let

ξ(s) = π−
s
2 Γ(s/2)ζ(s).

Then we have

Fm(τ, s) = 2π|m|s− 1
2 y

1
2 Is− 1

2
(2π|m|y)e(mx) +

4πσ2s−1(|m|)
(2s− 1)ξ(2s)

y1−s(18)

+ 4π|m|s− 1
2

∑

n6=0

c(m,n; s)y
1
2 Ks− 1

2
(2π|n|y)e(nx),

where

(19) c(m,n; s) =
∑
c>0

c−1K0(m,n; c) ·
{

I2s−1(4π
√
|mn| c−1) if mn < 0

J2s−1(4π
√
|mn| c−1) if mn > 0
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and
K0(m, n; c) =

∑

a(mod c)∗
e
(

ma+nā
c

)

is the usual Kloosterman sum, the * restricting the sum to (a, c) = 1. Consider the Maass
form

φ(τ) = ∂s−1f2−2s,m(τ)− (
F−m(τ, s) +

∑

0<n<`+1

a2−2s(m,−n)F−n(τ, s)
)
.

By Proposition 3 and (18) we have that

φ(τ) = c(0)y1−s +
∑

n6=0

c(n)y
1
2 Ks− 1

2
(2π|n| y)e(nx).

where the c(n) are explicitly computable in terms of the cs(m, n) and the a2−2s(m, n). Since
φ ∈ L2(Γ\H) with eigenvalue s(1− s), it must be equal to 0. ¤

In the case s = 1 the Poincaré series Fm(τ, 1) is defined through analytic continuation
(see e.g. [20]) and Proposition 4 continues to hold in the modified form

f0,m(τ) = jm(τ) = F−m(τ, 1)− 24σ(m) for m ≥ 1.

4. PRELIMINARY FORMULAS FOR THE TRACE

For the proof of Theorem 1, we will need to compute the trace of ∂s−1f2−2s,m in terms
of the coefficients of the basis elements fs+1/2,m. In view of Proposition 4, we are reduced
to computing Trd,D(Fm(·, s)), where Fm(τ, s) is the Poincaré series defined in (16). When
D = s = 1 it was shown in [8] that this trace may be expressed in a simple way in terms
of a certain exponential sum. In general we need the exponential sum introduced in [15]:

Sm(d,D; c) =
∑

b (mod c)

b2≡Dd (mod c)

χ
(

c
4
, b, b2−Dd

c

)
e
(

2mb
c

)
,

where χ is defined in (3) and c ≡ 0 (mod 4). Clearly

S−m(d,D; c) = Sm(d, D; c) = Sm(d,D; c).

We have the following identity.

Proposition 5. Let s ≥ 2 and m 6= 0. Suppose that D is fundamental and that dD < 0. Then

Trd,D(Fm(·, s)) =
√

2π|m|s− 1
2 |d| 14 |D| 14

∑

c≡0 (mod 4)

c−
1
2 Sm(d,D; c)Is− 1

2

(
4π
√

m2|dD|
c

)
.

Proof. We have the absolutely convergent expression

Trd,D(Fm(·, s)) = 2π|m|s− 1
2

∑
Q

χ(Q)
ωQ

∑

γ∈Γ∞\Γ
e(mRe γτQ)(Im γτQ)

1
2 Is− 1

2
(2π|m| Im γτQ)

=
√

2π|m|s− 1
2 |d| 14 |D| 14

∞∑
a=1

a−
1
2 Is− 1

2

(
π
√

m2|dD|
a

)[ ∑
Q

χ(Q)
ωQ

∑
γ

e
(
m Re( γτQ)

)]
,(20)

where the sum over γ is over all γ ∈ Γ∞\Γ with

Im γτQ =

√
|Dd|
2a

.
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Consider the sum in brackets in (20). For fixed a > 0, the values of 2aRe( γτQ) run over
the (mod 2a)-incongruent solutions to the quadratic congruence

b2 ≡ dD (mod 4a)

with multiplicity wQ as γ and Q run over their respective representatives. Thus we have
∑
Q

χ(Q)
ωQ

∑
γ

e
(
m Re( γτQ)

)
= 1

2
Sm(d,D; 4a).

Substitute this in (20) and write c for 4a to finish the proof. ¤

We need to express the traces in terms of the Fourier coefficients of modular forms.
This is done by applying an identity originally due to Salié in a special case to transform
the sum of exponential sums in Proposition 5 into a sum of Kloosterman sums. This
sum may then be interpreted in terms of the Fourier coefficients of half-integral weight
Poincaré series. This technique goes back to Zagier [25], who applied it in the context of
base-change. Kohnen [15] applied it to the Shimura lift of cusp forms. More recently, this
method has proven to be fruitful in the context of weakly holomorphic forms. In [8] it
was applied to give a new proof of Zagier’s original identity for traces of singular moduli.
The technique has since been extended in various ways in [13] and [3]. In particular,
the following formula for the trace of Fm(τ, s) in terms of the coefficients bk(m,n) of half
integral weight Poincaré series was given in [3] when m = −1 and (−1)sD < 0.

Proposition 6. Suppose that m 6= 0, s ≥ 2 and dD < 0 with D fundamental. Then

Trd,D(Fm(·, s)) =





ε |d| s
2 |D| 1−s

2
∑

n|m χD(n)ns−1bs+ 1
2

(− |d|, m2|D|
n2

)
, if (−1)sD > 0,

ε |d| 1−s
2 |D| s

2 |m|2s−1 ∑
n|m χD(n)n−sbs+ 1

2

(−m2|D|
n2 , |d|), if (−1)sD < 0,

where the sum n|m is over the positive divisors of m, ε = (−1)b
s+1
2
c, and bs+1/2 was defined in

Proposition 2.

Proof. Recall the Kloosterman sum associated to modular forms of half integral weight
defined in (13). It is clear that replacing k with k + 2 does not change this sum; each
Ks+ 1

2
(m,n, c) is equal to K 1

2
(m,n; c) or K 3

2
(m,n; c), depending on whether s is even or

odd, respectively. In fact, we have the relations

(21) K 1
2
(m,n; c) = i ·K 3

2
(−m,−n; c) = K 1

2
(n,m; c).

We have the following identity for the Kloosterman sums, which can be proved by a slight
modification of the proof of Kohnen in [15, Prop. 5, p. 258] (see also [8], [13] and [24]).

Lemma 1. For integers m 6= 0 and c > 0 with 4|c, an integer d with d ≡ 0, 1 (mod 4) and D a
fundamental discriminant, we have the identity

Sm(d,D; c) = (1− i)
∑

n|(m, c
4)

(
1 + δodd( c

4n
)
)
χD(n)

√
n
c

K 1
2

(
d, m2D

n2 ; c
n

)
.
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By Proposition 5 and Lemma 1 we quickly derive that

Trd,D(Fm(·, s)) =
√

2π(1− i)|m|s− 1
2 |d| 14 |D| 14

∑

n|m
χD(n)n−

1
2

·
∑

c≡0(4)

c−1(1 + δodd( c
4
))K 1

2

(
d, m2D

n2 ; c
)
Is− 1

2

(
4π
c

√
m2 |Dd| /n2

)
.

Comparison with Proposition 2 and use of (21) finishes the proof of Proposition 6. ¤

5. THE ZAGIER LIFT

In this section we give the proof of Theorem 1. The following proposition gives an
explicit formula for the Zagier lift of f ∈ M !

2−2s when (−1)sD > 0. In its proof we make
repeated use of the classical Shimura lift, integral and half-integral weight duality from
(9) and (12), and the fact that the constant term of a form in M !

2 must vanish. Write 2s =
12` + k′ with k′ ∈ {0, 4, 6, 8, 10, 14} as above.

Proposition 7. Suppose that s ≥ 2 is an integer and that f(τ) =
∑

n a(n)qn ∈ M !
2−2s. Suppose

that D is a fundamental discriminant with (−1)sD > 0. Then the Dth Zagier lift of f is given by

(22) ZDf =
∑
m>0

a(−m)
∑

n|m
χD(n)ns−1f 3

2
−s,

m2|D|
n2

.

Proof. Recall that when (−1)sD > 0 the Zagier lift was defined by

ZDf(τ) =
∑
m>0

a(−m)
∑

n|m
χD(n)ns−1q−

m2|D|
n2 + 1

2
L(1− s, χD)a(0) +

∑

d: dD<0

Tr∗d,D(f)q|d|,

where
Tr∗d,D(f) = (−1)b

s−1
2
c |d|− s

2 |D| s−1
2 Trd,D(∂s−1f).

We prove Proposition 7 by comparing the Fourier coefficients of ZDf with those of the
function on the right hand side of (22), which we will denote simply by F. We do this for
the positive coefficients, the principal parts and the constant terms separately.

Consider first the positive coefficients. By Propositions 4 and 6, we have for m > ` that

−Tr∗d,D(f2−2s,m) =
∑

n|m
χD(n)ns−1bs+ 1

2

(− |d| ; m2|D|
n2

)
(23)

+
∑̀
j=1

a2−2s(m,−j)
∑

h|j
χD(h)hs−1bs+ 1

2

(− |d| ; j2|D|
h2

)
.

From (14) we have the cusp form C(τ) = gs+ 1
2
,−|d|(τ)− fs+ 1

2
,|d|(τ) =

∑
n≥1 c(n)qn. Thus

bs+ 1
2

(− |d|, j2|D|
h2

)
= as+ 1

2

( |d| , j2|D|
h2

)
+ c

(
j2|D|

h2

)
.

However, SDC, the Dth Shimura lift of C, is a cusp form of weight 2s with jth coefficient
∑

h|j
χD(h)hs−1c

(
j2|D|

h2

)
.

The contribution to −Tr∗d,D(f2−2s,m) in (23) from coefficients of C, which is

∑

n|m
χD(n)ns−1c

(
m2|D|

n2

)
+

∑̀
j=1

a2−2s(m,−j)
∑

h|j
χD(h)hs−1c

(
j2|D|

h2

)
,
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can be interpreted as the constant term of (SDC)f2−2s,m ∈ M !
2, which must be zero. Thus

we have

−Tr∗d,D(f2−2s,m) =
∑

n|m
χD(n)ns−1as+ 1

2

( |d| , m2|D|
n2

)
(24)

+
∑̀
j=1

a2−2s(m,−j)
∑

h|j
χD(h)hs−1as+ 1

2

( |d| , j2|D|
h2

)
.(25)

By duality, Tr∗d,D(f2−2s,m) is the coefficient of q|d| in the Fourier expansion of

∑

n|m
χD(n)ns−1f 3

2
−s,

m2|D|
n2

−
∑̀
j=1

a2s(−j, m)
∑

h|j
χD(h)hs−1f 3

2
−s,

j2|D|
h2

.

For an arbitrary form f =
∑

a(m)qm ∈ M !
2−2s we have

f =
∑

m>`

a(−m)f2−2s,m, and so Tr∗d,D(f) =
∑

m>`

a(−m)Tr∗d,D(f2−2s,m)

is the coefficient of q|d| in

(26)
∑

m>`

a(−m)
( ∑

n|m
χD(n)ns−1f 3

2
−s,

m2|D|
n2

−
∑̀
j=1

a2s(−j,m)
∑

h|j
χD(h)hs−1f 3

2
−s,

j2|D|
h2

)
.

For 1 ≤ j ≤ ` we have, once again using that the constant of a form in M !
2 vanishes, that

a(−j) = −
∑

m>`

a(−m)a2s(−j,m).

Thus the form in (26) simplifies to F .
Next consider the principal parts. The properties of the basis elements given in Section 2

show that
f 3

2
−s,

m2|D|
n2

= 0 if m2|D|
n2 < C

for some C that depends only on the weight 3
2
− s. We use this and the Fourier expansion

f 3
2
−s,

m2|D|
n2

(τ) = q
−m2|D|

n2 +
∑

h

a 3
2
−s

(
m2|D|

n2 , h
)
qh

to write the negative powers of q appearing in the Fourier expansion of F as
∑
m>0

a(−m)
∑

n|m
χD(n)ns−1q

−m2|D|
n2(27)

−
∑
m>0

a(−m)
∑

n|m,
m2|D|

n2 <C

χD(h)ns−1q
−m2|D|

n2 +
∑

m,h>0

a(−m)
∑

n|m
χD(n)ns−1a 3

2
−s

(m2|D|
n2 ,−h

)
q−h.

The first sum is the principal part of ZDf, so we must prove that the expression in the
second line of (27), call it S, vanishes. By duality,

S = −
∑
m>0

a(−m)
( ∑

n|m,
m2|D|

n2 <C

χD(n)ns−1q
−m2|D|

n2 +
∑

h>0

∑

n|m
χD(n)ns−1as+ 1

2

(− h, m2|D|
n2

)
q−h

)
.
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Now for any h > 0, the coefficient of qm in the Shimura lift SDfs+ 1
2
,−h of the cusp form

fs+ 1
2
,−h is given by

∑

n|m
χD(n)ns−1 ·

(
as+ 1

2

(− h, m2|D|
n2

)
+

{
1, if m2|D|

n2 = h,

0, otherwise.

)

(The last term here arises from the initial qh in the Fourier expansion of fs+ 1
2
,−h, since

as+ 1
2
(−h, h) is zero by definition.) From this, it is clear that the coefficient of q−h in S for

each h > 0 can be interpreted as the constant term of (SDfs+ 1
2
,−h)f ∈ M !

2, so S = 0.
Finally we evaluate the constant term of F , again using duality, as
∑
m>0

a(−m)
∑

n|m
χD(n)ns−1a 3

2
−s

(m2|D|
n2 , 0

)
= −

∑
m>0

a(−m)
∑

n|m
χD(n)ns−1as+ 1

2

(
0, m2|D|

n2

)
.

Since s ≥ 2 we have by [16]

SDfs+ 1
2
,0(τ) = 1

2
L(1− s, χD) +

∑
m>0

( ∑

n|m
χD(n)hs−1as+ 1

2

(
0, n2|D|

h2

))
qm

and the constant term of (SDfs+ 1
2
,0)f ∈ M !

2 is

1
2
L(1− s, χD)a(0) +

∑
m>0

a(−m)
( ∑

n|m
χD(n)ns−1as+ 1

2

(
0, m2|D|

n2

))
= 0,

as desired. This concludes the proof of Proposition 7. ¤
We also need the corresponding statement if (−1)sD < 0.

Proposition 8. Suppose that s ≥ 2 is an integer and that f ∈ M !
2−2s has Fourier coefficients a(n).

Suppose that D is a fundamental discriminant with (−1)sD < 0. Then the Dth Zagier lift of f is
given by

(28) ZDf =
∑
m>0

a(−m)m2s−1
∑

n|m
χD(n)n−sf

s+ 1
2
,
m2|D|

n2

+ g,

where g ∈ Ss+1/2 is the unique cusp form whose Fourier coefficients b(n) match those of ZDf for
the first ` positive values of n with (−1)sn ≡ 0, 1 (mod 4).

Proof. Using Propositions 4 and 6 as before, we find that

Tr∗d,D(f2−2s,m) =m2s−1
∑

n|m
χD(n)n−sbs+ 1

2

(− m2|D|
n2 ; |d| )(29)

+
∑̀
j=1

a2−2s(m,−j)j2s−1
∑

h|j
χD(h)h−sbs+ 1

2

(− j2|D|
h2 ; |d| ).

Thus, the trace Tr∗d,D(f) of an arbitrary form

f =
∑

a(m)qm =
∑

m>`

a(−m)f2−2s,m

is given by
∑

m>`

a(−m)
(
m2s−1

∑

n|m
χD(n)n−sbs+ 1

2

(−m2|D|
n2 ; |d| )
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+
∑̀
j=1

a2−2s(m,−j)j2s−1
∑

h|j
χD(h)h−sbs+ 1

2

(−j2|D|
h2 ; |d| )

)

=
∑
m>0

a(−m)m2s−1
∑

n|m
χD(n)n−sbs+ 1

2

(−m2|D|
n2 ; |d| ),

where we have simplified as before. This is just the coefficient of q|d| in the modular form
F ∈ M !

s+ 1
2

given by

F =
∑
m>0

a(−m)m2s−1
∑

n|m
χD(n)n−sg

s+ 1
2
,
−m2|D|

n2

.

Now since g
s+ 1

2
,
−m2|D|

n2

− f
s+ 1

2
,
m2|D|

n2

∈ Ss+ 1
2

from (14), we find that

F =
∑
m>0

a(−m)m2s−1
∑

n|m
χD(n)n−sf

s+ 1
2
,
m2|D|

n2

+ g

for a certain cusp form g, and, arguing as in Proposition 7, the principal part of F matches
the principal part of ZDf . Since the constant term and positive coefficients of F match
those of ZDf , Proposition 8 now follows. ¤

The first statement of Theorem 1 follows from Propositions 7 and 8. The statement on
integrality follows from Proposition 1 in the case (−1)sD > 0. Otherwise we can reduce
to this case using the following identity, which holds if (−1)sD < 0 and D′ is fundamental
with (−1)sD′ > 0:

Tr∗m2D′,D(f) = −m2s−1
∑

a|m
µ(a)χD′(a)

∑

b|ma−1

χD(b)(ab)−sTr∗( m
ab

)2D,D′(f).

This identity is a consequence of the following lemma.

Lemma 2. For D and D′ fundamental discriminants with DD′ < 0 and m ∈ Z+ we have

Trm2D′,D =
∑

a|m
µ(a)χD′(a)

∑

b|ma−1

χD(b)Tr( m
ab

)2D,D′ .

Lemma 2 is obtained by writing the trace as a sum of sums over primitive quadratic
forms, noting that χD = χD′ for such primitive forms, and applying Möbius inversion.

We now briefly indicate how one shows that the Zagier lift is compatible with the Hecke
operators. If k ∈ 2Z > 0 and p is a prime, the weight k Hecke operator |kT (p) acts on a
modular form f(τ) =

∑
n a(n)qn ∈ M !

k by

f |kT (p) =
∑

n

(
a(pn) + pk−1a

(
n
p

))
qn.

If k ∈ 2Z ≤ 0, we multiply this by p1−k so that |kT (p) preserves the integrality of Fourier
coefficients.

When 0 < s ∈ Z, the half integral weight Hecke operator |s+1/2T (p2) acts on a form
g(τ) =

∑
n b(n)qn ∈ M !

s+1/2 by

g|s+1/2T (p2) =
∑

n

(
b(p2n) +

(
(−1)sn

p

)
ps−1b(n) + p2s−1b

(
n
p2

))
qn.

Again, for s ≤ 0, we normalize this by multiplying by p1−2s.
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It is straightforward to see that for any prime p,

(ZDf)|3/2−ŝT (p2) = ZD(f |2−2sT (p)).

In the case that (−1)sD > 0, we need only use the explicit Fourier expansion of the Zagier
lift to compare principal parts. If (−1)sD < 0, though, we must also show that
(30)
Tr∗(−1)sn,D(f |2−2sT (p)) = Tr∗(−1)snp2,D(f) +

(
(−1)sn

p

)
ps−1Tr∗(−1)sn,D(f) + p2s−1Tr∗(−1)sn/p2,D(f)

for the first ` positive values of n with (−1)sn ≡ 0, 1 (mod 4). To see that this holds, we
argue as in the proof of [26, Theorem 5(ii)] to show that Tr(−1)sn,D((∂s−1f)|0T (p)) equals

Tr(−1)snp2,D(∂s−1f) +
(

(−1)sn
p

)
Tr(−1)sn,D(∂s−1f) + pTr(−1)sn/p2,D(∂s−1f),

and use the fact that if k < 0, then ∂k(f |kT (p)) = p · (∂kf)|k+2T (p) to obtain equation (30).

6. THE SHIMURA LIFT

In this final section we prove Theorem 2. For this we need the following two proposi-
tions.

Proposition 9. Suppose that s ∈ Z+ and τ ∈ H. As a function of z ∈ H,

∂s−1

(
f2s(z)f2−2s(τ)

j(τ)− j(z)

)

is a meromorphic modular form of weight 2s with poles of order at most s that only occur at points
equivalent to τ under Γ.

Proof. Observe first that if f has weight k and g has weight 0 then by (4)

∂k(fg) = g ∂k(f) + f D(g).

Apply this repeatedly with g(τ) = (j(τ)− j(z))−n for 1 ≤ n < s. We derive that

∂s−1

(
f2−2s(τ)

j(τ)− j(z)

)
=

s∑
n=1

gn(τ)

(j(z)− j(τ))n

for gn ∈ M !
0, from which the result follows easily. ¤

Theorem 2 is a consequence of Proposition 9 together with the following explicit for-
mula for the Dth Shimura lift of fs+1/2,|d|. Write 2s = 12` + k′ as above.

Proposition 10. Suppose that s ≥ 2, (−1)sD > 0 and that dD < 0. Then

SDfs+1/2,|d|(z) = Tr∗d,D

(
f2s(z)f2−2s(τ)

j(τ)− j(z)

)
+ f(z),

where f ∈ M2s is the unique holomorphic form whose Fourier coefficients a(n) match those of
SDfs+1/2,|d| for n = 0, . . . , `.

Proof. By (7) we have, writing r = e(z),
(31)

SD fs+1/2,|d|(z) = 1
2
L(1− s, χD)as+1/2(|d|, 0) +

∑
m>0

( ∑

n|m
χD(n)ns−1as+1/2

(|d|, m2|D|
n2

))
rm.
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By (24) and (31) we have

−
∑

m>`

Tr∗d,D(f2−2s,m)rm =SDfs+1/2,|d|(z)− 1
2
L(1− s, χD)as+1/2(|d|, 0)(32)

−
∑

0<m≤`

( ∑

n|m
χD(n)ns−1as+1/2

(|d|, m2|D|
n2

))
rm

+
∑̀
j=1

∑

m>`

a2−2s(m,−j)rm
∑

h|j
χD(h)hs−1as+ 1

2

( |d| , j2|D|
h2

)
.(33)

By integral weight duality (9) the term in (33) is

−
∑̀
j=1

∑

m>`

a2s(−j, m)rm
∑

h|j
χD(h)hs−1as+ 1

2

( |d| , j2|D|
h2

)

= −
∑̀
j=1

(f2s,−j(z)− rj)
∑

h|j
χD(h)hs−1as+ 1

2

( |d| , j2|D|
h2

)
,

so by (32) we get after some cancellation that

−
∑

m>`

Tr∗d,D(f2−2s,m)rm = SDfs+1/2,|d|(z)− f(z).(34)

The identity of Proposition 10 follows from (8) and (34), at least when Im z > maxQ Im τQ.
Proposition 10 now follows by analytic continuation. ¤

Acknowledgements: After this paper was written we learned that results similar to some
of those presented here were obtained independently in a recent preprint by Miller and
Pixton [19]. Additionally, we thank the referee for some helpful comments.

7. APPENDIX

Table 1 gives explicit formulas for the first two basis elements fb+ 1
2
, f ∗

b+ 1
2

of weight b+1/2

for all b ∈ {6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19} as polynomials in the weight 1/2 theta
function θ =

∑
n∈Z qn2 and the weight 2 Eisenstein series on Γ0(4) given by

F (z) =
∞∑

n=0

σ(2n + 1)q2n+1.

Both θ and F have integral Fourier coefficients.
The space of holomorphic modular forms on Γ0(4) of weight s+1/2 is generated by the

forms F nθ2s+1−4n, where 0 ≤ n ≤ b2s+1
4
c (see [7]). Thus, to construct these basis elements

we examine the Fourier expansion of the form

f =

b 2s+1
4
c∑

n=0

A(n)F nθ2s+1−4n

and choose the coefficients A(n) so that f is in the plus space M !
s+ 1

2

and has the appropriate
leading terms in its Fourier expansion. Table 1 shows that all of the A(n) are integral for
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TABLE 1

f 13
2

= Fθ9 − 18F 2θ5 + 32F 3θ = q + O(q4)

f ∗13
2

= θ13 − 26Fθ9 + 156F 2θ5 = 1 + O(q4)

f 17
2

= Fθ13 − 26F 2θ9 + 152F 3θ5 + 128F 4θ = q + O(q4)

f ∗17
2

= θ17 − 34Fθ13 + 340F 2θ9 − 816F 3θ5 = 1 + O(q4)

f 19
2

= F 3θ7 − 16F 4θ3 = q3 + O(q4)

f ∗19
2

= θ19 − 38Fθ15 + 456F 2θ11 − 1672F 3θ7 = 1 + O(q4)

f 21
2

= Fθ17 − 34F 2θ13 + 336F 3θ9 − 800F 4θ5 + 512F 5θ = q + O(q4)

f ∗21
2

= θ21 − 42Fθ17 + 588F 2θ13 − 2912F 3θ9 + 2496F 4θ5 = 1 + O(q4)

f 23
2

= F 3θ11 − 12F 4θ7 − 64F 5θ3 = q3 + O(q4)

f ∗23
2

= θ23 − 46Fθ19 + 736F 2θ15 − 4600F 3θ11 + 8096F 4θ7 = 1 + O(q4)

f 25
2

= F 4θ9 − 16F 5θ5 = q4 + O(q5)

f ∗25
2

= Fθ21 − 42F 2θ17 + 584F 3θ13 − 2808F 4θ9 + 1792F 5θ5 + 2048F 6θ = q + O(q5)

f 27
2

= F 3θ15 − 32F 4θ11 + 272F 5θ7 − 256F 6θ3 = q3 + O(q4)

f ∗27
2

= θ27 − 54Fθ23 + 1080F 2θ19 − 9576F 3θ15

+34048F 4θ11 − 26752F 5θ7 = 1 + O(q4)
f 29

2
= F 4θ13 − 36F 5θ9 + 320F 6θ5 = q4 + O(q5)

f ∗29
2

= Fθ25 − 50F 2θ21 + 896F 3θ17 − 6664F 4θ13

+16672F 5θ9 − 3072F 6θ5 + 8192F 7θ = q + O(q5)
f 31

2
= F 4θ15 − 30F 5θ11 + 224F 6θ7 = q4 + O(q7)

f ∗31
2

= F 3θ19 − 38F 4θ15 + 444F 5θ11 − 1408F 6θ7 − 1024F 7θ3 = q3 + O(q7)

f 33
2

= F 4θ17 − 32F 5θ13 + 272F 6θ9 − 256F 7θ5 = q4 + O(q5)

f ∗33
2

= Fθ29 − 58F 2θ25 + 1272F 3θ21 − 12824F 4θ17

+56064F 5θ13 − 71552F 6θ9 − 4096F 7θ5 + 32768F 8θ = q + O(q5)
f 35

2
= F 4θ19 − 38F 5θ15 + 440F 6θ11 − 1408F 7θ7 = q4 + O(q7)

f ∗35
2

= F 3θ23 − 46F 4θ19 + 724F 5θ15 − 4240F 6θ11

+5632F 7θ7 − 4096F 8θ3 = q3 + O(q7)
f 39

2
= F 4θ23 − 46F 5θ19 + 720F 6θ15 − 4064F 7θ11 + 3584F 8θ7 = q4 + O(q7)

f ∗39
2

= F 3θ27 − 54F 4θ23 + 1068F 5θ19 − 9120F 6θ15

+28608F 7θ11 − 6144F 8θ7 − 16384F 9θ3 = q3 + O(q7)

the first two basis elements of each half integral weight, so it follows that all of the fb+ 1
2

and f ∗
b+ 1

2

have integral Fourier coefficients.
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