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Estimates for coefficients of L-functions. 11
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1. Introduction
In this sequence of papers we investigate Dirichlet series

oo
M Als,x) = 3 anx(n)n™
1

having Euler products and compatible functional equations with the aim of es-
timating the coefficients a,. It was shown in 21, [3] by different techniques that
if the analytic continuation and the functional equations kold for sufficiently
many characters then a suitable upper pound for a, is true which is consider-
ably better than that resuﬁing from the absolute convergence of the series. In
this instaliment we combine both techniques to give new results and improve
on those of [3] when (s, x) has an Euler product of degree 3.

Let p be an odd prime. We assume that for every non-principal even character
x (modp) the following hold :

(2) A(s, x) converges absolutely in Res > 1 and has analytic continuation to an

entire function in s-plane,

(3} A(s, x) satisfies the functional equation
8(s)A(s, x) = exfi(1 ~ )AL~ ,%)
with |e, | = 1 and

@ o) = (£) " TI rass + ),
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where a; are positive numbers with Yio; = o and §; are complex numbers with
a; + 2Ref; > 0 (o, f; are independent of y and p),

+
(5) Sp(a)=" Y eF(a) < pt,
x(modp)

where - means that the summation ranges over non-principal, even characters.

Remarks : in many cases « is half an integer, q == —;E say, and e, = 1-k(x)p_7ic
where 7{x) is the Gauss sum

(6) = . Xoe(z).

x(mod p)

In such case S,(a) can be represented in terms of k-dimensional Kloosterman
sums. Precisely, we have

- . =k 9
(7) Sp(a) ={p— l)p b Z cos (—ﬁ-(:c; e ﬂik))
z1rp=af{mod p) P

so {5) follows from the Deligne estimate [11.
We shall evaluate the mean-vatue of a,, over a short interval of an arithmetic

progression to modulus p. Let f be a smooth function supported in [z, z + 4]
with 2 < y £ z such that

® 1 <y

for all v > 0, the implied constant depending on » only. Let (a,p} = 1. Put

Dlp;a)= Y. anf(n}—?i—l > anf(n).

n=she(mod p) {n,p)=1

THEOREM 1. — Suppose (2 — 5} hold with « > 1/2 and that f satisfies (8). For
any a # 0 {modp) we have

) Dy(p;a) < o*(pT)>~}

where T = zy™' and ¢ is any positive number, the implied constant depending
on ¢ and the sequence A = (a,,) only.
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Our main interest is in Euler products of degree k = 2a = 3. In this case we
have shown in [3] that '

o0
(10) Z a’n~? converges absolutely in Re s > 1
1

subject to the above conditions for all primitive characters. We shall use (10)
to improve on (9) on average with respect to the moduli p. The sign ¢, of the
functional equation does not play a role in [3] nor in the proof of the following.

THEOREM 2. — Suppose {2 — 4} and (10) hold with o = 3/2 for prime moduli
p € P C {1, P] and that (10) is true. Suppose | satisfies (8). We then have

(11) 3 IDs(pi o) < 2*P(PT + PT? + (y)*).
PEF
oe

for any € > 0, the implied constant depending on ¢ and A only.

COROLLARY 1. — Suppose (2 —4) and (10) hold with « = 3/2 for prime moduli
of positive density. Moreover suppose that {10) holds and that
(123 Z lan| € =y i $>y>m%.
z<n<ety .

Then for all n > 1 we have

(13) an € nTTE,

If we apply (13) for the coefficients of the symmetric square zeta-function
associated with a Maass cusp form for SL;(#) as in [3] we conclude that (see
comments in [3] about the best known results).

COROLLARY 2. — Suppose A(n) are eigenvalues of the Heclce operators T, of a
cusp form u(z) for the modular group. We then have

Mn) < nTete,
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| 2. An application of the functional equations with ¢

[ We have . Stirlix
+ 2=l if g= £i(modp) :
> x(a)= _ :
x(mod p) 0 otherwise, . .' . (18)
Hence
2 ax : Insert
Difpia) ==y 3 MDA,
x{mod p}
where

As(x) =3 anx(n)f(n).

where
The functional eguation (3) yields (fhrough contour integration)
(19)
Ar(x) = exAq(X),
with
where ik Fo
: methy
1 2 #s)  _ :
14 =_— ——t " d 1 : i
( ) q(l}) I ;/(a‘) f(5)9(1 _ S)U s, o> lnteg]
(18) ¢
and f is the Mellin integral,
) . (20)
fls) = f Flu)u™du.
& with
Combining these rélations we obtain
21
15 Di(p;a)= 2 5
( ) f(P) a) = PTl Zam p{am)g(m)°
" Dy 5t
3. Evaluation of g
By repeated partial integration » times we get
R T\ ¥ we gE
(16) flo) <= ()
where ¢ = Res > % the implied constant depending on ¢ and v. Choosing v whert

sufficiently large we infer that

(17 Fs) <o) o fs| 22T




(mod p)

(X))

mtégration]

y, o>1

ig(m).

1g on ¢ and ». Choosing v

=T
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with any A > 0, the imptied constant depending on o,£ and A. Moreover by
stirting’s formula we have

o(s)

(18) Tl <l o o2 5

tnserting (18) and (16) with » = 20 into (14) we get
Mo
cafM
g(v) <yp (vv ) ,
where M = z~1(pT)?®. Choosing o sufficiently large we conchude that
(19) g(v) < o~ izt f vzztM

with any A > 0, the implied constant depending on ¢ and A.

For v < =M we shall evaluate g(v) asymptoticaily by the stationary phase

method. First we move the integration to the line o = 1/2, next we truncate the
mtegral at the heights +2°T controlling the error term by means of {17) and
(18) and change the order of integration giving

(20) (o) = [ St s+ 0™

T

1 =T 9(1 —I—!,t) .
23 I{w) = = NAYBRNL SY Ll 3
(21) (w)=3 f_ng G

By Stirling's formula ffor s = o + i with £ 2 1]
it 1 .=z
T(s) = \/271?(%) =t F 1+ 00N
we get
8(3 +it) _
oL —it)

where v = Ha?“‘ /® 4nd the implied constant depends on a;; 3j. Hence

[ZLige] ™ + 0@+ 107,

€

z*T
I{w)=n"Re ] MO gt 4+ O(log 2)
0
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where h(t) = 2at log (ﬂ;tp) — t logw. The saddle point tp = -;:f;wil”& lies in (he

range of integration s0 We have {see [5))

(22) T(w) = (ayp) 3 Re Cse(-;f—g-wﬁ%) 1+ O(log ).

Inserting (22) to (20} we get
05 gy = (o) [ FIReGee (2 )0 40 L]

e _1._.L
forv<ez M, where § = 5 — 1a-

4. Proof of Theorem 1
By (15), (19) and (23) we obtain
Dp(pia) =727 Lom<aeM O

(24) -8 —ima-1
=§Re[f(u)Lp(u)u du+ Oz p* 3T 7),

Sp(am)g(m) + O(m"A)

where

(25) LW =c amm™ Sp(am)ep(v(m))
m<st M

Gayp)E < p~ ¥ and v(m) = wzaf'y"‘(um)"ﬁ. By (2) and

with ¢, = 2(p — 1) 7 (=
~141-5 whence (9) follows by (24)-

(5) we get trivially Ly(u) € zp
5. Proof of Theorem 2

We may assume without loss of generality that P C (-};P, P]. By (24) and
(25) we obtain
(26) S Dol € SPIPAT +2° 5y P D,

pePpta

D= 3|3 amniSstameotr)]
2EP m<M .

with M = ¢t 1P°T® and v(m) = —3y~Y(um)} for some v € [z,z + y}. BY

Cauchy’s inequality and by Theorem 9 of [3] we get
* 2
p<Y T I =R (m)ep ()|
pEP x{mod p) m<M

« P(M + P*THlogz) |ami2m
m<M

2
s-

Here & <« M
obtain (11)-
6. Proof of |

Let 3 <2
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-, 1 .
inttp = n‘;”%wza lies in the

Hlog z).

+ Oz~

1

pemiret),

2(m))

ay™}(um)3. By (2) and
lows by {24).

c (3P.P]. By (24) ama
y*PD,

ol

some u € [z,z 4+ y]. By

()|
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Here T < M¥*¢ by the assumption (10). Inserting these estimates into (28) we
obtain (11).
6. Proof of Coroliaries

Let ¢ < £ < = +yand f(£) =1. We have

=0 +0] S lanfl+ 5 D land )]

nEiL(_‘n:nd 12
Summming over primes p ina set P C (1, Pl with p}£ we get

Pl = T 0,01+ 0 Y leal]
pEP z<alaty
« P(PTY + PAT +(ay)3)a® +y2°
by (11) and (12} provided z >y > #3/5_ Suppose [P| < P(log P)™*. We get
ar & (JF".I'."lz +PIT + (rcy)"‘i + Pyt
We choogse P =T = 2
ag < 2%+ which proves (13).
To prove Corollary 2 we apply Corollary 1 for the symmetric square zeta-
function whose coefficients are defined ﬁy '
an =y A&
dk3=n
The hypothesis (12) follows from the asymptotic formula of Selberg (see {41}
S X(m)=cN+ ont+).
n<N
For n prime (13) yields A(n)? = M) +1 = +1 K n®/™te whence
A(n) < nd/A%te, This result extends to prime powers by a recursive formula

and to all composite numbers by the multiplicativity.

217 5oy = %7 and all four terms are equal giving
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