
INFINITE PRODUCTS OF CYCLOTOMIC POLYNOMIALS

WILLIAM DUKE AND HA NAM NGUYEN

Abstract. We study analytic properties of certain infinite products of cyclotomic polyno-
mials that generalize some introduced by Mahler. We characterize those that have the unit
circle as a natural boundary and use associated Dirichlet series to obtain their asymptotic
behavior near roots of unity.

1. Introduction

In this paper we will investigate analytic properties of certain infinite products of cyclo-
tomic polynomials. The power series expansions of these products have interesting integer
coefficients. We will determine those that have the unit circle as a natural boundary and
then, at least in some cases, find their asymptotic behavior near roots of unity. This behavior
is subtle and is controlled by the size of certain cyclotomic integers and by the residues and
special values of associated Dirichlet series.

First we will recall the definition of the cyclotomic polynomials. For ` ∈ Z+ let ϕ(`) be
Euler’s function giving the number of positive integers ≤ ` that are relatively prime to `. Let
Φ`(x) ∈ Z[x] be the integral polynomial of degree ϕ(`) with Φ`(0) = 1 whose zeros are the
primitive `th roots of unity. The first few are

Φ1(x) = 1− x, Φ2(x) = 1 + x, Φ3(x) = 1 + x+ x2, Φ4(x) = 1 + x2, . . . .

Generally, for ` ≥ 2 we have

Φ`(x) =
∏

a(mod `)
gcd(a,`)=1

(x− e(a/`))

where we set e(z) = e2πiz. Thus Φ`(x) is the `th cyclotomic polynomial if ` ≥ 2, and is minus
the usual cyclotomic polynomial if ` = 1.1

For a fixed prime p consider the infinite product

(1) F (z) = Fp,`(z) =
∏
k≥0

Φ`(z
pk).

This product defines an analytic function in the unit disc D = {z; |z| < 1}. It is given by a
power series with integer coefficients a(n) ∈ Z:

F (z) =
∑
n≥0

a(n)zn.

To see that these coefficients can be interesting let us consider some examples. When p = 2
and ` = 1 we have

(2) F (z) =
∏
m≥0

(1− z2m) =
∑
n≥0

(−1)tnzn = 1− z − z2 + z3 − z4 + z5 + z6 − z7 − z8 + · · · .
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Here tn is the Thue-Morse sequence defined by tn = 0 or tn = 1 according to whether the sum
of the binary digits of n is even or odd. See [1] for a survey about this important sequence.
Another interesting example occurs when p = 2 and ` = 3:

(3) F (z) =
∏
k≥0

(1 + z2
k

+ z2
k+1

) =
∑
n≥0

b(n)zn = 1 + z + 2z2 + z3 + 3z4 + 2z5 + · · · .

The coefficients b(n) define the Stern diatomic sequence [21]:

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, . . . .

Here b(n) is the number of partitions of the integer n into powers of 2, in which no power of
2 is used more than twice. See [22] for an account of some of the amazing properties of the
sequence {b(n)}. Among them are that b(n + 1) and b(n) are relatively prime and that the

sequence of quotients defined by r(n) = b(n+1)
b(n)

enumerates all the positive rational numbers:

1, 2, 1
2
, 3, 2

3
, 3
2
, 1
3
, 4, 3

4
, 5
3
, 2
5
, 5
2
, . . . .

Another well-known class of examples comes when ` is prime and p > ` :

(4) F (z) =
∏
k≥0

(1 + zp
k

+ z2p
k

+ · · ·+ z(`−1)p
k

) =
∑
n≥0

a(n)zn.

Now a(n) = 1 if the base p expansion of n has only digits less than ` and a(n) = 0 otherwise.
When ` = 2 the sequence a(n) was studied by Lehmer, Mahler and van der Poorten [10].
When p = ` we have the trivial example

(5) F (z) =
∑
n≥0

zn =
1

1− z
,

as follows by the uniqueness of the base p expansion of an integer.
A famous result of Carlson and Pólya (see [20]) says that a power series with integral

coefficients that converges in D is either a rational function or has the unit circle as a natural
boundary. As (5) illustrates, for our F (z) this dichotomy is settled by whether or not p|`.

Theorem 1. The function F (z) is rational if and only if p|`, in which case

(6) F (z) =
1

Φm

(
zpr−1

) ,
where ` = prm with r ≥ 1 and p - m. Otherwise F (z) has the unit circle as a natural
boundary.

We will prove this result, parts of which are already known, in the next section. The main
originator of this line of research was Mahler. The fact that (2) and (4) have the unit circle
as a natural boundary follows from Mahler’s early papers [11] and [12], respectively. For (4)
one can apply the well-known result that a power series with coefficients from a finite set is
rational if and only if the coefficients are eventually periodic (see [19, p.138, #158]). That
the generating function of the Stern sequence (3) has the unit circle as a natural boundary
is also known (see [5]). More generally, it follows from [8] that F (z) has the unit circle as a
natural boundary when p - ` and ` is square-free. The reader may consult [4] and [18] and
their references for background on the relation of such results to transcendence theory.

Our proof that F (z) with p - ` has the unit circle as a natural boundary is short and uses
an approach given by Mahler in one of his last papers [14]. Actually, Mahler’s result includes
the case ` = 1 but not ` > 1. By suitably modifying his method, we will see that F (z) → 0
as z approaches a primitive (pn`)th root of unity along a radius of the unit circle, for any
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nonnegative integer n. This implies the result since the set of such roots of unity is dense
in the unit circle. In fact, this approach can be developed much further with interesting
applications. In the paper [8], Dumas and Flajolet give a very precise asymptotic formula
for the mth coefficient of the reciprocal function

F (z)−1 =
∏
k≥0

Φ`(z
pk)−1,

when p - ` and ` is square-free.2 They apply Cauchy’s formula in the manner of the circle
method and utilize asymptotic expansions of logF (z) near (pn`)th roots of unity. Their
method is a refinement of that of de Bruijn [3], who considered the case when ` = 1 and
p = 2, which had been studied earlier by Mahler [13].

Our main object is to determine the asymptotic behavior of F (z) as z approaches a qth

root of unity e(a/q) along a radius of the unit circle when p - q and q - `. We will see that
this behavior depends on the value of the cyclotomic integer

(7) S =

ordq(p)∏
k=1

Φ`(e(
pka
q

)).

Here ordq(b) for any integer b with gcd(b, q) = 1 is the usual multiplicative order of b modulo
q. Clearly S is a non-zero real number. Set

αq = (ordq(p) log p)−1.

Theorem 2. Suppose that p - q and q - `. If |S| < 1 then for some constant c depending on
a/q we have that

F (e(a
q

+ iy)) = c+ o(1)

as y → 0+. If |S| ≥ 1 there exists a continuous 1-periodic function g(x) depending on a/q so
that as y → 0+

F (e(a
q

+ iy)) ∼ g(αq log y)y−αq log |S|.

Now S is an element of Z[e(1/r)] where r = ϕ(`)/ordq(p). In fact, it follows from a well-
know result about resultants of cyclotomic polynomials (see [2]) that∏

a(mod q)
gcd(a,q)=1

Φ`(e(
a
q
)) =

{
p
ϕ(`)
1 if q/` = pm1 for some prime p1,

1 otherwise.

In particular, if q/` is not a power of a prime then S is a cyclotomic unit. In the special case
when p is also a primitive root modulo q we see that S = 1. Some other cases where S can
be evaluated follow from the results of [9].

For example, when p = 2 is a primitive root modulo q with q an odd prime (e.g. q =
3, 5, 11, 13, . . . ) we have for the Thue-Morse function (2)

(8) F (e(1
q

+ iy)) ∼ g( log y
(q−1) log 2)y

− log q
(q−1) log 2

while if q > 3 we have for the Stern function (3)

(9) F (e(1
q

+ iy)) ∼ g( log y
(q−1) log 2).

2Actually they allow p to be any integer ≥ 2 that is prime to `.
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Example (8) should be compared with results about the behavior of partial sums of the
Thue-Morse sequence in progressions first obtained by Newman [16] (see also [6] and [7] and
the references cited there.)

We remark that Theorem 2 holds as well when p | `. Of course, after Theorem 1 it is not
very interesting in this case.

We will see that the value of c and the Fourier expansion of g are determined by special
values and residues of Dirichlet series formed from the coefficients of F (z) twisted by expo-
nentials. Dirichlet series associated to more general infinite products are studied in Section
3. The main result of that section, Theorem 3, is then applied to prove Theorem 2 in Section
4. We end the paper in Section 5 with some concluding remarks.

Acknowledgements: We thank the editor and the referee for pointing out to us the papers
[3] and [8] and for their helpful comments. Parts of this paper, especially in Section 3, appear
in the Master’s thesis [17] of the second named author Ha Nam Nguyen. She thanks Werner
Horn, Bharath Sethuraman and Daniel Katz for their comments and suggestions.

2. Proof of Theorem 1.

To prove that (6) holds when p|` we need some basic results about cyclotomic polynomials.

Lemma 1. If m is odd and r ≥ 1 then

Φprm(z) =
Φm(zp

r
)

Φm(zpr−1)
.

Proof. We have the well-known identities (see [15, p.160]) for n ∈ Z+ and p a prime:

(10) Φpn(z) = Φn(zp)

when p | n and

(11) Φpn(z) =
Φn(zp)

Φn(z)

when p - n. Taking n = pr−1m and applying equation (10) r − 1 times and then applying
(11) once we get the result. �

If ` = prm with r ≥ 1 and p - m then by Lemma 1 we have the telescoping product∏
0≤k≤n

Φprm(zp
k

) =
Φm(zp

r
)

Φm(zpr−1)
· · · Φm(zp

r+n
)

Φm(zpr+n−1)
=

Φm(zp
r+n

)

Φm(zpr−1)
.

Thus by (1) we get (6) since

Fp,prm(z) = lim
n→∞

∏
0≤k≤n

Φprm(zp
k

) =
1

Φm(zpr−1)
.

Turning to the case when p - `, we have the following estimate.

Lemma 2. Suppose that p - `. There is an absolute constant C > 0 so that for gcd(a, `) = 1
and 0 < y < 1

|F
(
e(a

`
+ iy)

)
| �p,` e

−C(log y)2 .
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Proof. Recall that

|Φ`(z)| =
∏
ε

|z − ε|,

where the product runs over all primitive `th roots of unity ε. Thus there is a constant A
depending only on ` so that for any such ε we have the estimate

|Φ`(εe
−2πy)| ≤ A(1− e−2πy).

Since p - ` is odd we know that e(p
ka
`

) is a primitive `th root of unity for all k so we have

|F (e(a
`

+ iy))| ≤
∏

0≤k≤log(y−1)

A
(
1− e−2π(pky)

) ∏
k>log(y−1)

|Φ`

(
e(pk(a

`
+ iy))

)
|

�`

∏
0≤k≤log(y−1)

(2πA)pky � e−C(log y)2 .

�

Now it follows from (1) that for any n ≥ 1

F (z) =
n−1∏
k=0

Φ`(z
pk)F (zp

n

)

so by Lemma 2 we have that F (z) → 0 as z approaches any primitive (pn`)th root of unity
along a radius of the unit circle. Since the set of all these points is dense in the unit circle F
must have the unit circle as a natural boundary.

3. Associated Dirichlet series

Our proof of Theorem 2 makes use of analytic properties of a Dirichlet series associated to
F (z). In this section we will proceed a bit more generally. Let

P (τ) =
d∑

m=0

cme(mτ),

be a trigonometric polynomial of degree d ≥ 1 with cm ∈ C and c0 = 1. Let b ≥ 2 be an
integer and consider the Fourier series defined for τ ∈ H, the upper half-plane, by

(12) f(τ) =
∏
k≥0

P (bkτ).

This is easily seen to define an analytic function in H by comparison with
∑

n≥0 e(b
nτ). Thus

f has a Fourier expansion

(13) f(τ) = 1 +
∑
n≥1

a(n)e(nτ),

which converges uniformly on compact subsets of H. Note that a(n) = a`(n) from the
Introduction in case P (τ) = Φ`(e(τ)) and b = 2.

We are concerned with the associated Dirichlet series

ψ(s) =
∑
n≥1

a(n)n−s

and, more generally, its twist defined for a ∈ Z and q ∈ Z+ by

ψ(s, a/q) =
∑
n≥1

a(n)e(na/q)n−s.
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We will show that these series converge absolutely for Re(s) sufficiently large. Also, ψ(s, a/q)
may be meromorphically continued to the entire s-plane, provided gcd(q, b) = 1, and its
possible poles lie on or to the left of

Re(s) =
log |S(a/q)|
ordq(b) log b

,

where

(14) S(a/q) =

ordq(b)∏
k=1

d∑
m=0

cme(m
abk

q
)

and ordq(b) is as before the order of b modulo q.
In particular, if S(a/q) = 0 then ψ(s, a/q) is entire. In case q = 1 this last fact was proven

by Mahler [14].

Lemma 3. Let M = maxm |cm| and A = logM(d+1)
log b

. Then

(a) a(n) = O(nA) and

(b) f(τ) = O((Im τ)−A−1) for Im(τ) ≤ 1.

Proof. For the first statement, note that the number of factors in (12) that contribute a term
greater than 1 to a(n)e(nτ) in (13) is less than or equal to

N =
log n

log b
+ 1 =

log nb

log b
.

The number of possible products from these factors is (d + 1)N and the coefficient of each
product is bounded in absolute value by MN so

|a(n)| ≤ ((d+ 1)M)N = (d+ 1)MnA.

For the second statement we use the first to obtain∑
n≥1

|a(n)||e(nτ)| ≤
∑
n≥1

nAe−2πny = O(y−A−1)

for y ≤ 1. �

Remark: If P (0) = 0, Mahler showed in [14] that for all c > 0 we have f(τ) = O((Im τ)c)
from which the fact that ψ(s) is entire follows easily from the Mellin transform.

By Lemma 3(a) we see that the Dirichlet series ψ(s, a/q) converges absolutely for Re(s) >
A+ 1 and that we have the Mellin representation

(15) Ψ(s, a/q)
(def)
= (2π)−sΓ(s)ψ(s, a/q) =

∫ ∞
0

(f(a
q

+ iy)− 1)ys
dy

y
,

also for Re(s) > A+ 1.
It follows immediately from the definition (12) that f(τ) satisfies the functional equation

(16) f(τ) = f(bnτ)fn(τ)

for all positive integers n, where

fn(τ) =
n−1∏
k=0

P (bkτ).
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Note that f1(τ) = P (τ) and that we may write

(17) fn(τ) =
dn∑
m=0

cn,me(mτ),

where

dn = d(bn − 1)(b− 1)−1.

It is also convenient to define the Dirichlet polynomial

(18) ψn(s, a/q) =
dn∑
m=1

cn,me(m
a
q
)m−s.

Observe that cn,m = a(m) for n > logm
log b

.

Theorem 3. Suppose that gcd(b, q) = 1. If S(a/q) = 0 then ψ(s, a/q) has an analytic
continuation to an entire function. Otherwise, ψ(s, a/q) has a meromorphic continuation to
the entire s-plane with at most simple poles at

sj,k =
1

ordq(b) log b

(
log |S(a/q)|+ i argS(a/q)± 2πij − k

)

for j, k = 0, 1, 2, . . . . Moreover, there is a constant C > 0 so that for

Re(s) ≥ Re(s0,0)− 1
2

we have

(19)
(
bs ordq(b) − S(a/q)

)
ψ(s, a/q) = O

(
(| Im s|+ 1)C

)
.

Proof. We establish a kind of recursion formula for ψ(s, a/q) that allows us to meromorphi-
cally continue ψ(s, a/q) in vertical strips of width 1, inductively.
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Set n = ordq(b), which is defined since gcd(b, q) = 1. By the functional equation (16) and
(15) we have for Re(s) > A+ 1 that

Ψ(s, a/q) =

∫ ∞
0

fn(a
q

+ iy)[f(a
q

+ iybn)− 1]ys
dy

y
+

∫ ∞
0

(fn(a
q

+ iy)− 1)ys
dy

y

=
dn∑
m=0

cn,me(m
a
q
)

∫ ∞
0

e(imy)[f(a
q

+ iybn)− 1]ys
dy

y

+
dn∑
m=1

cn,me(m
a
q
)

∫ ∞
0

e(imy)ys
dy

y

=b−ns
dn∑
m=0

cn,me(m
a
q
)

∫ ∞
0

e(imb−ny)[f(a
q

+ iy)− 1]ys
dy

y

+(2π)−sΓ(s)ψn(s, a/q) by (18)

=b−ns
dn∑
m=0

cn,me(m
a
q
)

∫ ∞
0

[e(imb−ny)− 1][f(a
q

+ iy)− 1]ys
dy

y

+b−ns
dn∑
m=0

cn,me(m
a
q
)

∫ ∞
0

[f(a
q

+ iy)− 1]ys
dy

y
+ (2π)−sΓ(s)ψn(s, a/q)

=b−ns
dn∑
m=1

cn,me(m
a
q
)

∫ ∞
0

[e(imb−ny)− 1][f(a
q

+ iy)− 1]ys
dy

y

+b−nsfn(a/q)Ψ(s, a/q) + (2π)−sΓ(s)ψn(s, a/q) by (17).

Thus for Re(s) > A+ 1 we have, upon using n = ordq(b) and (14), that

Ψ(s, a/q)(bns − S(a/q)) =bns(2π)−sΓ(s)ψn(s, a/q)

+
dn∑
m=1

cn,me(m
a
q
)

∫ ∞
0

[e(imb−ny)− 1][f(a
q

+ iy)− 1]ys
dy

y
.

Now write for K a non-negative integer

e(imb−ny)− 1 =
K∑
k=1

(−2πmb−ny)k

k!
+ EK(my)

where EK(y) = O(yK) for y ≥ 1 while for y ≤ 1

(20) EK(y) = O(yK+1).

Thus we have for Re(s) > A+ 1

Ψ(s, a/q)(bns − S(a/q)) =bns(2π)−sΓ(s)ψn(s, a/q)(21)

+
K∑
k=1

b−nk(−2π)k

k!
ψn(−k, a/q)Ψ(s+ k, a/q) +GK(s),

where by Lemma 3(b) and (20)

GK(s) =
dn∑
m=1

cn,me(m
a
q
)

∫ ∞
0

EK(my)[f(a
q

+ iy)− 1]ys
dy

y
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is holomorphic for Re(s) > A−K.
Now bns − S(a/q) = 0 if and only if

s =
1

ordq(b) log b

(
log |S(a/q)|+ i argS(a/q) + 2πij

)
for j ∈ Z.

We use (21) for K = 0 to define ψ(s, a/q) for Re(s) > A with possible simple poles at
these points. We then continue this process with K = 1, 2, . . . .

Finally, (19) follows from (21) and the fact that

Γ(s+ k)

Γ(s)
= O(|s|k).

�

4. Proof of Theorem 2.

In Theorem 3 take P (τ) = Φ`(e(τ)) and b = p. To prove Theorem 2 we use the inverse
Mellin transform from (15) to represent F (e(a/q + iy)) in terms of Ψ(s, a/q) :

F (e(a/q + iy))− 1 =
1

2πi

∫
Re(s)=c

Ψ(s, a/q)y−sds

=
1

2πi

∫
Re(s)=c

(2π)−sΓ(s)ψ(s, a/q)y−sds

where c is sufficiently large. Now we push the contour to the line Re(s) = Re(s0,0)− 1/2 and
pick up residues at the (possible) simple poles sj,0. Using (19) and the exponential decay of
the gamma function on vertical lines we now easily derive the asymptotic formula of Theorem
2. Explicitly, if |S| < 1 we get the main contribution from the pole of Γ(s) at s = 0:

F (e(a
q

+ iy)) = c+O(y−αq log |S|),

where c = 1 + ψ(0, a/q). If |S| ≥ 1 we get the Fourier expansion

g(x) =
∑
n∈Z

ρ(n)e(nz)

where
ρ(n) = ress=snΨ(s, a/q)

and
sn = αq

(
log |S| − 2πin).

The absolute convergence of this Fourier series follows from (19) and the exponential decay
of Γ(s) on vertical lines.

5. Concluding remarks

As should be clear, many of the results of this paper can be generalized in various ways.
In particular, a generalization of Theorem 2 may be given for more general products of the
form (12). Our restriction to cyclotomic polynomials and b = p was mainly to give easily
stated and perhaps more elegant results that apply to the Thue-Morse and Stern diatomic
sequences. Also, there could be some interest in further understanding the nature of the
residues and special values of the associated Dirichlet series ψ(s, a/q) in this case. Is it
possible to express them in terms of invariants of cyclotomic fields? The Dirichlet series used
by de Bruijn, Dumas and Flajolet in [3] and [8] arise from the Mellin transform of logF (z),
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and are directly related to classical zeta functions. It might be interesting to try to connect
them with ψ(s, a/q).
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