
Continued Fractions and Modular Functions
W. Duke

The mathematical universe is inhabited not only by important
species but also by interesting individuals.– C.L. Siegel1

1. Introduction

It is widely recognized that the work of Ramanujan deeply in-
fluenced the direction of modern number theory. This influence res-
onates clearly in the “Ramanujan conjectures.” Here I will explore
another part of his work whose position within number theory seems
to be less well understood, even though it is more elementary, namely
that related to continued fractions. I will concentrate on the special
values of continued fractions that represent modular functions, es-
pecially the Rogers-Ramanujan continued fraction. These give ana-
logues of the simple continued fraction expansions of units in real
quadratic fields. My primary motivation is to furnish a coherent
treatment of this topic, around which an air of mystery seems to
linger. Another is to provide an inviting and non-standard intro-
duction to the classical theory of modular functions.

This is largely an expository paper; most of the ideas I discuss are
well known. Yet it is hoped that the elaboration given here combines
these ideas in a novel way. Although this paper is not intended to be
comprehensive, its later sections contain more material than is likely
needed to gain a clear impression of the main themes, which the
first six sections should provide. These will take the general reader
through a proof of the first main result, Theorem 1, introducing the
needed concepts along the way. The sections that follow these as-
sume a somewhat greater background in number theory.
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1See [Mag, p.10].
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2. The Rogers-Ramanujan continued fraction

According to G.H. Hardy [Har, p.13], Ramanujan’s masterpiece
in continued fractions was his work on the Rogers-Ramanujan con-
tinued fraction. This is defined by

(2.1) r(τ) =
q1/5

1 +
q

1 +
q2

1 +
q3

1 + · · ·

=
q1/5

1 +

q

1 +

q2

1 +

q3

1 + · · · ,

where q = e(τ) = e2πiτ . It converges2 for τ ∈ H, the upper half-plane,
and also for some τ ∈ R, for example τ = 0, where

(2.2) r(0) =
1

1 +

1

1 +

1

1 +

1

1 + · · · = −1+
√

5
2

.

In his first letter to Hardy in 1913 [Ram1, p.xxvii], Ramanujan gave
a remarkable analogue of (2.2) for the value at i =

√−1:

(2.3) r(i) =
e
−2π

5
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e−2π
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e−4π
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e−6π

1 + · · · =

√
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√
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2
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√
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2

.

Another value he gave in his “lost” notebook was at the cube root of
unity ρ = −1+

√−3
2

, which can be written

(2.4) e( 1
10

)r(ρ) =
e
−π
√

3
5

1 −
e−π

√
3

1 +

e−2π
√

3

1 −
e−3π

√
3

1 + · · · =

√
30+6

√
5−3−√5

4
.

In his letter he stated that r(1
2

√−n) “can be exactly found if n be any pos-
itive rational quantity” and in his notebooks and other writings pro-
vided several more examples. Ramanujan’s writings do not contain
proofs of any of these results.3 In his lecture on Ramanujan in 1988
[Se2, p.699], Selberg wrote

”One might speculate, although it may be somewhat futile,
about what would have happened if Ramanujan had come in
contact not with Hardy but with a great mathematician of more
similar talents, someone who was more inclined in the algebraic
directions, for instance E. Hecke in Germany.”

2For background on continued fractions see [BC, Chap. XV]. A more advanced
reference is [Per].

3Proofs of (2.3) and (2.4) were first published in [Wa1] and [Ra2], respectively.
See also [MM, p.154] for Watson’s treatment of (2.3). Proofs of several of Ramanu-
jan’s other claims about special values of r(τ) may be found in [Ra1] and [BCZ].
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One goal of this paper is to show that special evaluations of the
Rogers-Ramanujan continued fraction are best understood through
Klein’s theory of the icosahedron and its connection with modular
functions. Klein’s theory, already articulated in 1877–1878 in [Kl1]
and [Kl2], together with basic facts from the classical theory of com-
plex multiplication, neatly explain these results.

We will see in §6 below that the Rogers-Ramanujan continued
fraction r = r(τ) satisfies the icosahedral equation

(2.5) (r20−228r15 +494r10 +228r5 +1)3 + j(τ)r5(r10 +11r5−1)5 = 0,

where j is the classical modular function

j(τ) = q−1 + 744 + 196884q + 21493760q2 + · · · .

This fact has as a consequence the following result, whose proof is
completed at the end of §6:

THEOREM 1. The value r(τ) can be expressed in terms of radicals over
Q if and only if j(τ) can and the icosahedral equation (2.5) is reducible over
Q(ζ, j(τ)), where ζ = e(1

5
).

Recall that an algebraic number is a root of an integral polyno-
mial, an algebraic integer is a root of a monic integral polynomial
and that a unit is an algebraic integer whose inverse is also an al-
gebraic integer. Let Q̄ denote the field of all algebraic numbers. A
number field is a subfield of Q̄ of finite degree over Q. An imagi-
nary quadratic field is a number field of degree 2 over Q that is not
contained in R.

It follows easily from (2.5) that r(τ) is a unit if j(τ) is an algebraic
integer. In his classic book of 1908 Weber [Web, p.423] proved the
fundamental result in the theory of complex multiplication that j(τ)
is an algebraic integer if τ is in an imaginary quadratic field. Thus in
this case r(τ) is a unit.4 Furthermore, j(τ) can be expressed in terms
of radicals over Q. We recall these facts and complete the proof of
the following result in §8.

THEOREM 2. If τ is in an imaginary quadratic field then r(τ) is a unit
that can be expressed in terms of radicals over Q.

Perhaps this provides a satisfactory interpretation of Ramanu-
jan’s general claim about r(1

2

√−n). For τ imaginary quadratic, (2.5)
reduces the evaluation of r(τ) to a machine calculation. Thus r(i)

4This fact (for τ = 1
2

√−n) was first proven in [BCZ] ia another way.
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from (2.3) is a root of the factor r4 + 2r3 − 6r2 − 2r + 1 of (2.5) when
j(i) = 1728. As another example we have

e
−π
√

19
5

1 −
e−π

√
19

1 +
e−2π

√
19

1 −
e−3π

√
19

1 + ···

=
−8−3

√
5−
√

125+60
√

5+

√
250+108

√
5+(16+6

√
5)
√

125+60
√

5

4
,

which comes from solving (2.5) when j(−1+
√

19
2

) = −21533. The only
limitations to evaluating r(τ) for τ imaginary quadratic are one’s
software and patience, since j(τ) is explicitly computable. On the
other hand, if τ has j(τ) = 1, say, then r(τ) is a unit but it is not
expressible in terms of radicals over Q.

Some unexpected consequences of the connection of r(τ) with the
icosahedron, proven at the end of §3, are the identity

(2.6) r(−7τ−10
5τ+7

) = −1
r(τ)

,

and the simple evaluations

(2.7) r(7+i
10

) = i and r(−7+i
5

) = −i.

There is also a sort of converse result, proven in §8, that states that the
evaluations given in (2.7) are the simplest possible for an algebraic
argument.

THEOREM 3. The only values of r(τ) that are algebraic of degree ≤ 2
over Q for an algebraic value of τ ∈ H are ±i, as in (2.7).

The following six sections contain proofs of these results as well
as a number of other identities involving the Rogers-Ramanujan con-
tinued fraction. In §9 we provide a parallel (but abbreviated) treat-
ment of other continued fractions and then in §10 give a brief discus-
sion of the role of a certain generalization of continued fractions in
the theory of modular functions.

3. The icosahedron

There is a beautiful connection between the Rogers-Ramanujan
continued fraction (2.1) and the icosahedron that explains the eval-
uations (2.3) and (2.4) geometrically but that, surprisingly, does not
appear to be widely known. It also provides the first step toward
proving (2.5) and Theorem 1.

Consider an icosahedron inscribed in the unit sphere and sub-
divide each face into 6 triangles by connecting its centroid with the
surrounding vertices and edge midpoints. First project these points
and edges onto the sphere from its center, resulting in a tessellation
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FIGURE 1. Icosahedral tessellation of the sphere

of the sphere into triangles and place the sphere over the complex
plane as in Figure 1,5 shown from directly above.

Next, stereographically project this tessellation on the extended
complex plane and call a resulting point of intersection an edge point,
a face point or a vertex depending on its origin in the icosahedron.
As shown in Figure 2, an edge point, face point or vertex has 4, 6 or
10 triangles coming into it, respectively.

The following result shows that the Rogers-Ramanujan contin-
ued fraction plays a role for the icosahedron that is analogous to that
played by the exponential function for a regular polygon.

PROPOSITION 1. As a, b, c, d run over all integers with ad − bc = 1,
r(ai+b

ci+d
) runs over the edge points and r(aρ+b

cρ+d
) runs over the face points.

Furthermore, r(a·0+b
c·0+d

) = r( b
d
) converges if and only if 5 - d, in which case

r( b
d
) runs over the non-zero finite vertices.

The proof of this relies on the group of proper rotations of the
sphere that leave the icosahedron invariant. This group is well-known
to be isomorphic to A5, the alternating group of order 60. Each of the
59 non-trivial rotations is of order 2, 3 or 5 and has two fixed points,
whose images in the extended complex plane are both edge points,
face points, or vertices, respectively. This group corresponds under
stereographic projection to the subgroup G60 ⊂ PSL(2,C) of Möbius

5The figures in this paper are all reproduced from Fricke [Fri].
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FIGURE 2. Stereographic projection of icosahedral tessellation

transformations with generators represented in SU(2) by the matri-
ces

S =

(
ζ3 0
0 ζ2

)
and T = 1√

5

(
ζ − ζ4 ζ3 − ζ2

ζ3 − ζ2 ζ4 − ζ

)
,

where ζ = e(1
5
), giving elliptic transformations of order 5 and 2, re-

spectively [Fri, p. 42] (or [Tot, p.28]). The group G60 also contains
the elliptic transformation of order 3 represented by

W = TS = 1√
5

(
ζ4 − ζ2 1− ζ4

ζ − 1 ζ − ζ3

)
.

Clearly the vertices 0 and ∞ are the fixed points of S. Using the
elementary relations

ζ + ζ4 = −(ζ2 + ζ3)−1 = −1+
√

5
2

and ζ−ζ4

ζ2−ζ3 = 1+
√

5
2

,
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it is straightforward to compute the fixed points of T and W : they
are

(3.1) t± = − 1+
√

5
2

±
√

5+
√

5
2

and w± = ζ2 3+
√

5 ±
√

30+6
√

5

4
.

We may identify the (non-Euclidean) triangle formed by 0, t+ and
w− as the small shaded triangle of Figure 2 with 0 as a vertex and an
edge along the positive real axis. Its internal angles are π

2
, π

3
and π

5
.

Another way of arriving at a transformation of G60 is to perform an
even number of reflections in the sides of this triangle and its images.

To prove Proposition 1 we need the connection between G60 and
the modular group Γ(1) = PSL(2,Z). As usual, g ∈ Γ(1) acts on
τ ∈ H as a linear fractional transformation. For any positive integer
N let Γ(N) ⊂ Γ(1) be the normal subgroup consisting of those trans-
formations in Γ(1) that are congruent to the identity mod N . This
subgroup is known as the principal congruence subgroup of level N .

PROPOSITION 2. Suppose τ ∈ H. We have that

r(τ + 1) = Sr(τ) = ζ r(τ) and

r(−1
τ

) = Tr(τ) = −(1+
√

5)r(τ)+2

2r(τ)+1+
√

5
.(3.2)

Also, r(gτ) = r(τ) for all g ∈ Γ(5).

The evaluations (2.3) and (2.4) are immediate consequences of
Proposition 2 and (3.1), since r(i) is a fixed point of T and r(ρ) one
of W = TS and the appropriate values from (3.1) are easily deter-
mined. The first statement of Proposition 1 also now follows from
Proposition 2, since r(i) is an edge point and r(ρ) is a face point, and
G60 acts transitively on each type. Of course, any of these special
values can be explicitly computed using Proposition 2.

In 1917 Schur [Sch] proved that r(b/d) converges if and only if 5 -
d. Since r(0) as given in (2.2) is a finite vertex, the second statement
of Proposition 1 follows as well by a simple continuity argument,
thereby reducing the proof of Proposition 1 to that of Proposition 2.

In fact, when 5 - d, Schur evaluated r(b/d) and his result can be
put in the elegant form

(3.3) r( b
d
) =

(
5
d

) (
r(0)e( bd

5
)
)( 5

d) .

This formula for the non-zero finite vertices is also easy to derive
using Proposition 2.

The “unexpected” consequences (2.6) and (2.7) of Proposition 2
come from the fact that G60 contains the inversion U : z 7→ −1/z,
where U = TS2TS3TS2 [Fri, p. 42].
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4. An identity of Rogers and theta constants

Probably the most important fact about the Rogers–Ramanujan
continued fraction, and the key to the proof of Proposition 2, is the
famous identity proven first by Rogers [Ro1]:

(4.1) r(τ) = q1/5
∏
n≥1

(1− qn)

(
5
n

)

for τ ∈ H, where
(

5
n

)
is the Kronecker symbol. This follows from the

Rogers-Ramanujan identities
∑
n≥0

qn2

(1− q) · · · (1− qn)
=

∏
n≥1

1

(1− q5n−1)(1− q5n−4)
(4.2)

∑
n≥0

qn(n+1)

(1− q) · · · (1− qn)
=

∏
n≥1

1

(1− q5n−2)(1− q5n−3)

since
R(z) =

∑
n≥0

znqn2

[(1− q) · · · (1− qn)]−1

satisfies the recurrence R(z) = R(zq) + zqR(zq2), so that we have
r(τ) = q1/5R(q)/R(1). The Rogers-Ramanujan identities have purely
combinatorial interpretations. For example, (4.2) says that the num-
ber of partitions of n with minimal difference 2 is equal to the number of
partitions into parts of the forms 5m + 1 and 5m + 4. See [Ask] for an
account of the (complex) history of the Rogers-Ramanujan identities
and references to the different proofs.

Actually, a formula equivalent to (3.2) was stated by Ramanujan
in his second letter to Hardy [Ram1, p.xxviii] and a proof was first
published by Watson [Wa2]. We will give a proof of Proposition 2
based on theta constants that better illuminates what is going on and
is more general.

The theta constant with characteristic
[

ε
ε′
] ∈ R2 is defined by

θ
[

ε
ε′
]
(τ) =

∑

n∈Z
e(1

2
(n + ε

2
)2τ + ε′

2
(n + ε

2
))

for τ ∈ H. It satisfies the following basic properties for `,m, N ∈ Z
with N positive [FK, pp.72–77]:

θ
[

ε
ε′
]
(τ) = e(∓ εm

2
)θ

[ ±ε+2`
±ε′+2m

]
(τ)(4.3)

θ
[

ε
ε′
]
(τ) =

N−1∑

k=0

θ
[ ε+2k

N
Nε′

]
(N2τ).(4.4)
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It also satisfies for ( a b
c d ) ∈ SL(2,Z) the fundamental transformation

law [FK, Thm 1.11 p.81]:

(4.5) θ
[

ε
ε′
]
(aτ+b

cτ+d
) = κ

√
cτ + d θ

[
aε+cε′−ac
bε+dε′+bd

]
(τ)

where

κ = e(−1
4
(aε + cε′)bd− 1

8
(abε2 + cdε′2 + 2bcεε′))κ0,

with κ0 an eighth root of unity depending only on the matrix ( a b
c d ).

The value of κ0 is fixed by choosing the argument of the square root
to be in [0, π). In particular we have

(4.6) θ
[

ε
ε′
]
(τ + 1) = e(− ε

4
(1 + ε

2
)) θ

[
ε
ε′
]
(τ)

and

(4.7) θ
[

ε
ε′
]
(−1

τ
) = e(−1

8
)
√

τ e( εε′
4

) θ
[

ε′
−ε

]
(τ).

Additional transformation formulas invoked later in the text are given
in Appendix A. We also have the product formula [FK, p.141]:
(4.8)

θ
[

ε
ε′
]
(τ) = e( εε′

4
)q

ε2

8

∏
n≥1

(1− qn)(1 + e( ε′
2
)qn−1+ε

2 )(1 + e(−ε′
2

)qn−1−ε
2 ),

which follows from the Jacobi triple product identity.
A short calculation using (4.1) and (4.8) shows that

(4.9) r(τ) = e(− 1
10

)
θ
[
3/5
1

]
(5τ)

θ
[
1/5
1

]
(5τ)

.

Since clearly r(τ + 1) = ζr(τ), consider (3.2). For this we have using
(4.7), (4.3) and (4.4)

r(−1
τ

) = e(− 1
10

)
θ
[
3/5
1

]
(−5

τ
)

θ
[
1/5
1

]
(−5

τ
)

=
θ
[

1
3/5

]
( τ

5
)

θ
[

1
1/5

]
( τ

5
)

=

∑4
k=0 θ

[ 1+2k
5
3

]
(5τ)

∑4
k=0 θ

[ 1+2k
5
1

]
(5τ)

.

Using again (4.3) and its consequence that θ
[
1
1

]
(τ) = 0, we get after

some simplification that

(4.10) r(−1
τ

) =

(
e(1

5
)− e(4

5
)
)
r(τ) +

(
e(3

5
)− e(2

5
)
)

(
e(3

5
)− e(2

5
)
)
r(τ)− (

e(1
5
)− e(4

5
)
) = T r(τ)

and this can be written r(−1
τ

) = −(1+
√

5)r(τ)+2

2r(τ)+1+
√

5
.

It is straightforward to check that r is invariant under Γ(5) using
either Lemma A.1 or the fact that Γ(5) is the unique normal subgroup
of index 60 in Γ(1) [New], thus finishing the proof of Proposition 2.
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5. Invariants and the icosahedral equation

As preparation for the proof of (2.5) and Theorem 1, we now re-
view Klein’s construction of invariants of the icosahedral group G60.
Given a finite subgroup G ⊂ PSL(2,C), a (projective) invariant of
weight k for G is a rational function I(z) ∈ C(z) that satisfies

I(az+b
cz+d

) = (cz + d)kI(z)

for every ( a b
c b ) ∈ G. By using the formula for the vertices given in

(3.3), it is easy to check that

(5.1)
∏

b (mod 10)

(z − r( b
2
)) = z10 + 11z5 − 1.

Thus the polynomial V (z) = z(z10 + 11z5 − 1) has a simple zero at
each finite vertex. It follows that V is an invariant of weight −12 for
G60. The Hessian determinant of the corresponding homogeneneous
form

Ṽ (z, w) = w12V (z/w),

namely

F̃ (z, w) =

∣∣∣∣
Ṽzz Ṽzw

Ṽwz Ṽww

∣∣∣∣ ,

gives another invariant [Dic, p.4]

F (z) = − 1
121

F̃ (z, 1) = z20 − 228z15 + 494z10 + 228z5 + 1,

this time of weight -20. Since the 20 roots of this polynomial are
distinct and left stable under G60, it follows that they must be the
face points. One can also check directly that F (w+) = 0, where w+ is
the face point from (3.1). Finally, the Jacobian determinant

Ẽ(z, w) =

∣∣∣∣
Ṽz Ṽw

F̃z F̃w

∣∣∣∣
gives an invariant

E(z) = 1
20

Ẽ(z, 1) = z30 + 522(z25 − z5)− 10005(z20 + z10) + 1

of weight -30 whose roots are the edge points. These three invariants
satisfy an algebraic relation (a syzygy):

(5.2) E2 − F 3 = 1728V 5.

For a positive integer N the N -th cyclotomic field Q(ζN) is the
smallest number field containing the N -th root of unity ζN = e(1/N).
Now the invariant V (z) = z(z10 + 11z5 − 1) factors over Q as

V (z) = z(z2 + z− 1)(z4− 3z3 + 4z2− 2z + 1)(z4 + 2z3 + 4z2 + 3z + 1).
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Its splitting field, which is the smallest subfield of C containing all of
its roots, is easily checked to be Q(ζ10) = Q(ζ). Furthermore, every
root is a unit since the constant term of F is 1. Similarly, the splitting
field of F is Q(ζ20) while that of E is Q(ζ30), and all of the roots are
units. As a consequence of Proposition 1 we have

COROLLARY 1. Each of the 60 non-zero finite vertices, edge points,
and face points of the icosahedron is a unit in the cyclotomic field Q(ζ60).
Each of these units has a continued fraction expansion obtained by evaluat-
ing r(τ) for some τ ∈ Q(ζ60).

By using the basic invariants V and F we may construct an in-
variant of weight 0:

(5.3) J(z) = −F (z)3

V (z)5
= − (z20−228z15+494z10+228z5+1)3

z5(z10+11z5−1)5
.

The associated icosahedral equation6

(5.4) (z20 − 228z15 + 494z10 + 228z5 + 1)3 + Jz5(z10 + 11z5 − 1)5 = 0

defines a function field extension K(z) over K(J) of degree 60 for
any field K ⊂ C, since as a polynomial in z and J the left hand
side of (5.4) is easily checked to be irreducible over C. Provided ζ =
e(1/5) ∈ K, a transformation A of G60 acts as an automorphism of
the field K(z) by f(z) 7→ f(A−1z). Let L ⊂ K(z) be the fixed field
of G60. By a well-known theorem (see e.g. [Art]), K(z) is a Galois
extension of degree 60 over L with Galois group G60. Since J ∈ L,
we must have L = K(J). Thus we have

PROPOSITION 3. Suppose that K ⊂ C is a field that contains ζ . The
field K(z) is a Galois extension of K(J(z)) with Galois group G60 ' A5.

One computes that the discriminant of the left hand side of (5.4)
is

5785J40(J − 1728)30

and hence that the only values of J for which (5.4) has multiple roots
are J = 0 and J = 1728. By a standard result of Galois theory [Bra,
p.214] we know that for any specialization of J ∈ C for which (5.4)
has no multiple roots, the Galois group of K(z)/K(J) is a subgroup
of G60, which is proper if and only if (5.4) is reducible over K(J). We
have shown the following:

PROPOSITION 4. Suppose that K ⊂ C is a field that contains ζ , that
J ∈ C \ {0, 1728} and that z is a root of (5.4). Then K(z) defines a Galois

6This name is sometimes mistakenly applied to the syzygy (5.2).
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extension ofK(J) whose Galois group G is a subgroup of A5. This subgroup
is proper if and only if (5.4) is reducible over K(J).

Note that by (5.2) we have an equivalent alternative to (5.4):

E3(z) + (J(z)− 1728)V (z)5 = 0.

Thus the cyclotomic fields generated by face points and edge points
treated in Proposition 1 correspond to the only ramified specializa-
tions J = 0 and J = 1728, respectively.

A special case of a major result of Klein [Kl4] (see also [Tot, p.80])
implies that the splitting field of any principal quintic

x5 + a2x
2 + a1x + a0

defined over K(J) with Galois group A5 is of the form K(z) for some
J ∈ K. Klein’s result is the point of departure for Serre’s work on the
Witt invariant of the trace form Tr(x2) [Ser1, Ser2, Ser3].

6. Modular functions

Turning now to the proof of (2.5) and Theorem 1, it is finally time
to introduce modular functions. A congruence subgroup Γ of Γ(1) of
level N is a subgroup that contains Γ(N) for some N . Given a congru-
ence subgroup Γ the quotient Γ\H can be made into a Riemann sur-
face with a finite number of punctures occurring at the inequivalent
cusps, which are the fixed points of the parabolic transformations of
Γ, hence rational numbers (and i∞). By filling in these punctures we
obtain a compact Riemann surface whose genus can be computed
from Γ [Sc, p.93].

A modular function f for Γ is a meromorphic function on this
compact Riemann surface. This means that f is meromorphic on H,
f(gτ) = f(τ) for all g ∈ Γ and that for every g ∈ Γ(1) the Laurent
expansion

f(gτ) =
∑

n∈Z
ag(n)qn/wg

around the cusp g−1(i∞) has only finitely many nonzero negative
coefficients. Here wg|N is the width of the cusp, which is the smallest
m ∈ Z+ so that

±g−1 ( 1 1
0 1 )m g ∈ Γ.

The order of a pole or zero at the cusp is measured in terms of q1/wg .
Since i∞ is always a cusp there is a distinguished Laurent expansion,
often called simply the q-expansion of f :

f(τ) =
∑

n

a1(n)qn/w1 =
∑

n

a(n)qn/w.
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FIGURE 3. Tessellation of H by fundamental domains
for Γ(1)

The a(n) so defined are called the Fourier coefficients of f .
Figure 3 shows the familiar tessellation of H by the action of the

full modular group Γ(1), a fundamental domain for this action being
any pair of triangles, one shaded and one not. Now Γ(1) has only 1
cusp, the cusp at i∞, which has width 1, and its associated compact
Riemann surface has genus 0. Thus there is a unique modular func-
tion for Γ(1) that is holomorphic on H with a simple pole at i∞, that
vanishes at τ = ρ and that takes the value 1728 = 123 at τ = i. This
modular function may be explicitly given by either of the following
formulas

(6.1) j(τ) =
123g3

2(τ)

g3
2(τ)−27g2

3(τ)
= 1728 +

66g2
3(τ)

g3
2(τ)−27g2

3(τ)

for the j-invariant of the elliptic curve defined over C by

y2 = 4x3 − g2x− g3.

Here g2 and g3 are the Eisenstein series

(6.2) g2(τ) = 60
∑′

m,n

(mτ + n)−4 and g3(τ) = 140
∑′

m,n

(mτ + n)−6,
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FIGURE 4. Fundamental domain for Γ(5)

the primed sums being over all nonzero integer pairs (m, n). It fol-
lows from the basic theory of elliptic functions that

(6.3) ∆(τ) = g3
2(τ)− 27g2

3(τ) = (2π)12q
∏
n≥1

(1− qn)24

and that j is a modular function for Γ(1) that is holomorphic on H
with q-expansion

j(τ) =
(1 + 240

∑
m,n≥1 m3qmn)3

q
∏

n≥1(1− qn)24
= q−1 + 744 + · · · .

The Fourier coefficients are integers with some remarkable interpre-
tations [Bor]. It is easily seen that g2(ρ) = g3(i) = 0 and so from (6.1)
we have that j(ρ) = 0 and j(i) = 1728.

The Rogers-Ramanujan continued fraction r is a modular func-
tion for Γ(5). By (4.1), r(τ) is analytic in H and has no zeros there.
By Proposition 2 we have that r transforms correctly and one checks
that the inequivalent cusps of Γ(5) are exactly the 10 rational num-
bers b/d in the product (5.1) together with i∞ and−7

5
. Each cusp has
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width 5, which is also the number of fundamental regions for Γ(1)
coming into each cusp. The q-expansion of r(τ) comes from (4.1)

(6.4) r(τ) = q1/5(1− q + q2− q4 + q5− q6 + q7− q9 +2q10− 3q11 + · · · )
and has integer coefficients. The values of r at the other cusps of Γ(5)
correspond precisely to the 11 nonzero vertices of the icosahedron.
Therefore we see that r is holomorphic at all except for−7

5
, where by

(2.6) and (4.1) again it has the Laurent expansion

(6.5) r(−7τ−10
5τ+7

) = −1
r(τ)

= −q−1/5(1+q−q3+q5+q6−q7−2q8+2q10+· · · ).
The coefficients of both expansions (6.4) and (6.5) have an interesting
combinatorial meaning (see [An1] and [Hir]). Figure 4 shows a (par-
tial) picture of a fundamental domain for Γ(5), including the cusps
−2,−3

2
,−7

5
, 2 and 5

2
. Figure 2 can now be interpreted as the image of

this fundamental domain under the map τ 7→ r(τ). For instance, one
may identify the point −7+i

5
in Figure 4 and its image r(−7+i

5
) = −i in

Figure 2.
If the (compact) Riemann surface from Γ has genus 0, then there

is a Hauptmodul, a modular function with exactly one simple pole. A
Hauptmodul will have exactly one simple zero and is uniquely de-
termined by the location of its pole, its zero, and its (nonzero) value
at another prescribed point. Any modular function for Γ is a ratio-
nal function of a Hauptmodul. The compact Riemann surface for
G = Γ(N) has genus 0 for N ≤ 5 but not for N > 5. We have seen
that j is a Hauptmodul for Γ(1) and r one for Γ(5). Hence j can
be be expressed as a rational function of r. In fact, the icosahedral
invariant J given in (5.3) provides this rational function for us.

By Proposition 2, it is clear that the function on H defined by
J(r(τ)) satisfies J(r(gτ)) = J(r(τ)) for all g ∈ Γ(1). By what we
know about the behavior of r in the cusps, V (r(τ)) never vanishes
onH. Hence J(r(τ)) is holomorphic onH and it is also easy to check
from (5.3) that is has a simple pole at ∞. Similarly, it must satisfy
J(r(ρ)) = 0 and J(r(i)) = 1728. It follows that J(r(τ)) = j(τ) and
hence that r satisfies the icosahedral equation (2.5). In addition, we
may conclude the following result from Proposition 4.

PROPOSITION 5. Assume that τ ∈ H is such that j(τ) 6= 0, 1728.
ThenQ(ζ, r(τ)) defines a Galois extension ofQ(ζ, j(τ)) whose Galois group
G is a subgroup of Γ(1)/Γ(5) ' A5, proper if and only if (2.5) is reducible
over Q(ζ, j(τ)).

Theorem 1 is a consequence of Proposition 5, since A5 is not solvable
but any proper subgroup is.
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7. The Dedekind eta-function and r(τ)

Before turning to the proof of Theorem 2, I will first indicate how
some of Ramanujan’s well-known identities7 involving r(τ) can be
proven using the basic theory of modular functions for various con-
gruence subgroups. Most of these identities involve the Dedekind
eta-function

η(τ) = q1/24
∏
n≥1

(1− qn),

which transforms under the full modular group, as can be deduced
from Euler’s identity, itself a consequence of (4.8):

η(τ) = e(− 1
12

) θ
[
1/3
1

]
(3τ).

The following explicit transformation law follows from [Kno, Thm2
p.51]. For ( a b

c d ) ∈ SL(2,Z) with c ≥ 0 and d = 1 if c = 0,

(7.1) η(aτ+b
cτ+d

) = νη

√
cτ + d η(τ)

where

νη =

{(
d
c

)
e
( (a+d)c−bd(c2−1)−3c

24

)
if c is odd,(

c
|d|

)
e
( (a+d)c−bd(c2−1)+3d−3−3cd

24

)
if c is even.

Here
( ·
·
)

is the Jacobi symbol with the convention that
(

0
1

)
= 1.

Using (7.1) one may check that η(τ/5)
η(5τ)

is a modular function for
Γ(5). Since r(τ) is a Hauptmodul for Γ(5), it is then not difficult to
arrive at the following identity of Ramanujan

(7.2) r−1(τ)− 1− r(τ) = η(τ/5)
η(5τ)

,

used in [Wa1] to prove (2.3).
An important congruence subgroup of level N is

Γ1(N) = {± ( a b
c d ) ∈ Γ(1) : c ≡ 0(mod N) and d ≡ 1(mod N)} .

It is well known that the genus of the associated compact Riemann
surface is 0 exactly for N ≤ 10 and for N = 12 [Ogg, p.109]. We are
interested here in the example Γ1(5), which has inequivalent cusps
at i∞, 0, 1

2
and 2

5
with widths 1, 5, 5, 1, respectively. Using (4.9) and

Lemma A.1 of the Appendix, it can be shown that r5(τ) is a Haupt-
modul for Γ1(5). Since Γ1(5) is normalized by the Fricke involution

7A proof of (7.2) below was first published in [Dar], of (7.3) in [Ra1], of (7.4)
in [Ro2], of (7.5) in [Wa2], of (7.7) in [Dar] and [Ro2] and of (7.10) in [Dar]. Each
identity occurs in Ramanujan’s writings: (7.2) and (7.7) in [Ram3, p.238, 239], (7.3)
in [Ram3, p.364], (7.4) and (7.5) in [Ram1, p.xxvii,xxviii] and (7.10) in [Ram2] (see
[Be, III,p.257]).
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τ 7→ −1
5τ

, we have that r5(−1
5τ

) is a modular function for Γ1(5). We
easily deduce the following identity:

(7.3) r5(−1
5τ

) = − r5(τ)− ε5

ε5 r5(τ) + 1
, where ε = −1+

√
5

2
.

This will be used in our proof of Theorem 2 given in the next section.
Combining (7.3) with (3.2) we get the pretty identity

(7.4) r5(τ/5)
r(5τ)

= r4(τ)−3r3(τ)+4r2(τ)−2r(τ)+1
r4(τ)+2r3(τ)+4r2(τ)+3r(τ)+1

Ramanujan stated in his first letter to Hardy. We may also derive the
evaluation he gave in his second letter

(7.5) r(
√−5) =

√
5

1+
5
√

53/4((
√

5−1)/2)5/2−1
−

√
5+1
2

by an easy fixed point calculation.
Another important congruence subgroup of level N is

Γ0(N) = {± ( a b
c d ) ∈ Γ(1) : c ≡ 0(mod N)} .

The associated compact Riemann surface has genus 0 exactly when
N ≤ 10 and N = 12, 13, 16, 18, 25 [Sc, Thm 15. p.103]. The group
Γ0(5) has only two cusps, at i∞ and 0. It can be shown using (7.1)
that a Hauptmodul for Γ0(5) is given by (η(τ)/η(5τ))6. A calculation
using (4.9) and (A.3) shows that for ± ( a b

c d ) ∈ Γ0(5)

(7.6) r5(aτ+b
cτ+d

) =
(

5
d

) (
r5(τ)

)(
5
d

)
.

We can then easily derive the companion of (7.2):

(7.7) r−5(τ)− 11− r5(τ) =
(

η(τ)
η(5τ)

)6
.

It follows from (7.6) that the function defined by

(7.8) f(τ) = 1
2πi

d
dτ

log(r5(τ))

transforms under ± ( a b
c d ) ∈ Γ0(5) by

f(aτ+b
cτ+d

) =
(

5
d

)
(cτ + d)2f(τ).

The function f is an example of a modular form of weight 2 for Γ0(5)
with character

(
5
·
)
. By (7.1) the function η5(5τ)/η(τ) transforms in

precisely the same way and it is readily seen that

(7.9) f(τ) η(τ)
η5(5τ)

=
( η(τ)

η(5τ)

)6
.

Combining (7.8), (7.9) and (4.1) we get

(7.10) 5
2πi

r′(τ)
r(τ)

= 1− 5
∑
n≥1

(
5
n

)
nqn

1−qn = η5(τ)
η(5τ)

.
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We can write this identity in the equivalent form

r(τ) =
√

5−1
2

e
(

1
5

∫ τ

0

η5(z)
η(5z)

dz
)
,

upon using (2.2).
The series from (7.10)

1− 5
∑
n≥1

(
5
n

)
nqn

1−qn = 1− 5
∑
n≥1

( ∑

d|n

(
5
d

)
d
)
qn

gives the q-expansion of an Eisenstein series of weight 2. There are
a number of other identities connecting r(τ) with Eisenstein series
that are amenable to a similar treatment using modular functions
that we will not prove here. The following example, which appears
in [Ram3], was proven in [An1, p.102] by means of Ramanujan’s
“1ψ1-summation”:

r(τ)3 = q3/5

∑
n∈Z

q2n

1−q5n+2∑
n∈Z

qn

1−q5n+1

.

This identity may also be written in the form

r(τ)3 = q3/5

∑∞
n=0

1+q5n+2

1−q5n+2 q5n2+4n −∑∞
n=0

1+q5n+3

1−q5n+3 q5n2+6n+1

∑∞
n=0

1+q5n+1

1−q5n+1 q5n2+2n −∑∞
n=0

1+q5n+4

1−q5n+4 q5n2+8n+3
.

See [An2] for more examples of this type.

8. Modular curves and complex multiplication

The compact Riemann surfaces associated to Γ(N), Γ1(N) and
Γ0(N) are the complex points of algebraic curves X(N), X1(N) and
X0(N), known as modular curves, that can even be defined over
Q [Shi]. Furthermore, their non-cusp points may be interpreted as
parameterizing elliptic curves with various level-N structures, i.e.
modular curves are moduli spaces for elliptic curves.

In particular, the non-cusp points of X1(N) parameterize elliptic
curves together with a rational point of order N . For N = 5, for in-
stance, we have an explicit equation for such a curve E (Tate’s form):

(8.1) y2 + (1− b)xy − by = x3 − bx2.

One may check that P = (0, 0) is a point of order 5 on E, with 2P =
(b, b2), 3P = (b, 0), 4P = (0, b), 5P = 0. This curve has j-invariant

j(E) =
(b4 − 12b3 + 14b2 + 12b + 1)3

b5(b2 − 11b− 1)
.
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Upon making the substitution b = b(τ) = −r5(−1
5τ

) = r5(τ)−ε5

ε5 r5(τ)+1
from

(7.3), a (machine) calculation shows that

j(E) = −(r20(τ)−228r15(τ)+494r10(τ)+228r5(τ)+1)3

r5(τ)(r10(τ)+11r5(τ)−1)5
,

which, in view of the icosahedral equation (2.5), shows that j(E) =
j(τ). Thus the Hauptmodul b(τ) = −r5(−1

5τ
) for Γ1(5) determines a

curve E from (8.1) with j-invariant j(τ).
If we assume that j(τ) 6= 0, 1728 is algebraic, then E is isomorphic

over Q̄ to the curve Eτ defined over the number field Q(j(τ)) by

y2 = 4x3 + cx + c where c = 27j(τ)
1728−j(τ)

,

since j(Eτ ) = j(τ). In general let Eτ [N ] denote the group of N -
torsion points in Eτ (Q̄) and Q(j(τ), Eτ [N ]) denote the N -division
field of Eτ , obtained by adjoining to Q(j(τ)) both coordinates of
all points of Eτ [N ]. Using the basic facts about this field (see [Shi,
p.135]) it is readily seen that b(τ) is contained in Q(j(τ), Eτ [5]).

We may now give a rather direct proof of Theorem 2 of §2. If τ is
in an imaginary quadratic field K then Eτ has extra endomorphisms
(“complex multiplications”) forming an order O in K. It is a conse-
quence of the First Main Theorem of complex multiplication that j(τ)
is an algebraic integer and that K(j(τ)) is an abelian extension of
K whose Galois group is isomorphic to the group of (proper) ideal
classes of O [Cox, Thm 11.1 p.220]. Furthermore, K(j(τ), Eτ [N ]) is
an abelian extension of K(j(τ)) [Sil, Thm 2.3 p.108]. In particular,
b(τ) ∈ Q(j(τ), Eτ [5]) is expressible in terms of radicals over Q and
hence so is r(τ) since b(τ) = r5(τ)−ε5

ε5 r5(τ)+1
. This proves Theorem 2.

Turning now to the proof of Theorem 3 of §2, we have the classi-
cal result of Schneider [S] stating that if j(τ) is algebraic for an alge-
braic τ , then τ must be imaginary quadratic. The proof of Theorem
3 comes down to the (tedious) task of factoring (2.5) for each of the
13 integer values of j(τ) and each of the 29 quadratic values (up to
Galois conjugation) of j(τ) that occur for imaginary quadratic values
of τ and are listed in [Ber]. We must be sure that this list is complete.
By [Cox, Thm 10.23 p.214], we are reduced to finding all imaginary
quadratic orders with class number ≤ 2. By the class number for-
mula [Cox, p.146] it is enough to find all such maximal orders, and
these have all been determined (see [Sta] and its references).

In general, suppose that f is any modular function for Γ(N) whose
Fourier coefficients are contained inQ(ζN). The set of all such modu-
lar functions form a field. It is shown in [Shi, Prop.6.9(1) p.140] that
this field is generated over Q by j and the N2 − 1 distinct modular
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functions for Γ(N) given by

fα(τ) = g2(τ)g3(τ)
∆(τ)

(
1

(α1+α2τ)2
+

∑′

m,n

(
1

(α1+α2τ−m−nτ)2
− 1

(m+nτ)2

))
,

where α = (α1, α2) ∈ Q2 with α /∈ Z2 has Nα ∈ Z2. Here g2 and g3

and ∆ are defined in (6.2) and (6.3). Observe that fα(τ) is constructed
from the Weierstrass ℘-function for the lattice Z ⊕ τZ specialized at
an N -torsion point. For later purposes set f(1,0) = 0.

Suppose that τ ∈ H is not a pole of f and is such that j(τ) 6=
0, 1728 is algebraic (these omitted cases may be handled separately).
It follows easily that f(τ) is in fact contained in the N–division field
Q(j(τ), Eτ [N ]) of Eτ . Also, the same argument as before shows that
this field is solvable over Q if τ is in an imaginary quadratic field
K. A deeper consequence of the theory of complex multiplication
in this case is that K(j(τ), f(τ)) is an abelian extension of K. Sup-
pose that K = Q(

√
D) has discriminant D < −4. The Second Main

Theorem of complex multiplication (for elliptic curves) implies the
converse statement, that every abelian extension of K is contained
in K(j(τ), f(1/N,0)(τ)) for τ = D+

√
D

2
and some N ∈ Z+ [Deu, §24].

See [BCHIS, I] and [Cox, p. 242.] for more information and further
references.

9. More continued fractions

There are several other continued fractions that occur in the the-
ory of modular functions. Ramanujan studied the following two rel-
atives of r(τ)

u(τ) =

√
2 q1/8

1 +

q

1 + q+

q2

1 + q2+

q3

1 + q3+

q4

1 + q4+ · · ·(9.1)

v(τ) =
q1/2

1 + q+

q2

1 + q3+

q4

1 + q5+

q6

1 + q7+

q8

1 + q9+ · · · ,(9.2)

which appear in the first two entries of Chapter XIX of his second
notebook [Ram2, p.229]. His assertions there can be put in the form
of the following analogues of Rogers’ identity (4.1):

u(τ) =
√

2 q1/8
∏
n≥1

(1 + qn)(−1)n

(9.3)

v(τ) = q1/2
∏
n≥1

(1− qn)

(
8
n

)
,(9.4)
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for τ ∈ H. Proofs of (9.4) were first published in [Göl] and [Gor]. It
seems to have not been noticed that (9.3) follows immediately from
an identity first stated by Eisenstein in 1844 [Eis, p.290 in Werke]:
(9.5)∏

n≥0

1− xqn

1− yqn
=

1

1+

x− y

1− q+

qy − x

1 + q+

q2x− qy

1− q3+

q3y − qx

1 + q2+

q4x− q2y

1− q5+ · · · ,

valid when τ ∈ H and |y| < 1. Eisenstein gave no indication of
how he proved (9.5) and the proof published in 1877 by Muir [Mu2],
which refers to [Mu1], appears to be incomplete. See [Fol] for a proof
and a discussion of Eisenstein’s other continued fractions.

The special values of these continued fractions are also interest-
ing and even simpler than those of r(τ). We next establish the follow-
ing identities connecting these continued fractions with each other
and with j:

(u16 + 14u8 + 1)3 − 2−4j(τ)u8(u8 − 1)4 = 0(9.6)

u4(v2 + 1)2 + 4v(v2 − 1) = 0.(9.7)

These equations are both solvable overQ(j(τ)) and if τ is in an imag-
inary quadratic field then u(τ) and v(τ) can be expressed in terms of
radicals over Q, and v(τ) is a unit.

To prove (9.6), from (9.3) we can write

u(τ) =
√

2 q1/8
∏
n≥1

(1−q2n−1)
(1−q4n−2)2

=
√

2 η(τ)η2(4τ)
η3(2τ)

(9.8)

and a calculation using the product formula (4.8) gives

u2(τ) = 2η2(τ)η4(4τ)
η6(2τ)

= θ
[
1
0

]
(2τ)/θ

[
0
0

]
(2τ).

One may check using (4.7) and (4.4) that

u2(2(τ + 1)) = i u2(2τ) and u2(2(−1
τ

)) = 1−u2(2τ)
1+u2(2τ)

.

These two transformations generate the octahedral group, which is
the image of the symmetry group of the regular octahedron stere-
ographically projected on the complex plane, as in the case of the
icosahedron. Proceeding as we did with r, one derives (9.6), which
is Klein’s octahedral equation evaluated at u2. The fact that (9.6) is
solvable over Q(j(τ)) follows from [Dic, p.238]. Since u2 has its only
pole at the cusp 1

2
with Laurent expansion there

u2( τ
2τ+1

) = 2
u2(τ)

= 2q−1/4(1− 2q + . . . ),

it follows that u2 is a Hauptmodul for Γ(4).
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In order to derive (9.7) we need to consider the congruence sub-
group Γ1(8). The Riemann surface associated to Γ1(8) has genus 0
and cusps at i∞, 0, 1

4
, 1

3
, 3

8
, and 1

2
with widths 1, 8, 2, 8, 1 and 4, re-

spectively. It can be shown using

v(τ) = e(−1
8
)
θ
[
3/4
1

]
(8τ)

θ
[
1/4
1

]
(8τ)

and Lemma A.1 that v2 is a Hauptmodul for Γ1(8) with its zero at ∞
and its pole at 3

8
. Furthermore, we have that

v2(0) = 3− 2
√

2, v2(1
4
) = 1, v2(1

3
) = 3 + 2

√
2 and v2(1

2
) = −1.

Now u8 is a modular function for Γ1(8) with simple zeros at ∞ and
3
8

and a double zero at 1
4

and no others, and a pole of order 4 at 1
2

and no others. Since 16v2(1−v2)2

(1+v2)4
has the same zeros and poles, the

quotient of these two modular functions is an entire function on a
compact Riemann surface, hence constant. It is then easy to see that
this constant must be 1 and that (9.7) follows by taking the correct
square root.

One can also readily derive the following analogues of (7.3) and
(7.7) by using Γ1(8) and Γ0(8) :

v2(−1
8τ

) = v2(τ)−σ2

σ2v2(τ)−1
and v−2(τ) + v2(τ)− 6 = η4(τ)η2(4τ)

η2(2τ)η4(8τ)
,

where σ = −1 +
√

2.
In addition to proving (9.3), Eisenstein’s identity (9.5) also pro-

vides other continued fractions apparently not in Ramanujan’s writ-
ings. For example, let

w(τ) =

√
2 q1/24

1 −
q

1− q+

q

1 + q−
q3

1− q3+

q2

1 + q2−
q5

1− q5+

q3

1 + q3− · · · ,

where the pattern is easily discerned by looking at every other term.
Then it follows from (9.5) that for τ ∈ H,

(9.9) w(τ) =
√

2 q1/24
∏
n≥1

(1 + qn).

Actually, w as defined by the product (9.9) is one of the classical We-
ber functions, denoted by him f2, and which can be expressed in
terms of the η-function by

(9.10) w(τ) =
√

2 η(2τ)/η(τ).
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Using (7.1) we can show that w24 is a Hauptmodul for Γ1(2) = Γ0(2)
and from this arrive at Weber’s [Web] identity:

(9.11) (w24 + 16)3 − j(τ)w24 = 0,

which is obviously solvable over Q(j(τ)). Also, we have from (9.10)
and (9.8) that

(9.12) u(τ) = w2(2τ)/w(τ).

Weber [Web, pp.457–499] obtained many results about the spe-
cial values of w and of the related products

q−1/48
∏
n≥1

(1 + qn−1/2) and q−1/48
∏
n≥1

(1− qn−1/2),

which clearly both have continued fraction expansions derivable from
(9.5). Ramanujan also explicitly evaluated these products for a large
number of imaginary quadratic values of τ (see e.g. [Ram1, #6]).

It is not obvious from (9.6) or (9.11) whether or not u(τ) or w(τ)
is a unit when τ is in an imaginary quadratic field, although it is
clear that the only troublesome prime is 2. If, for example, τ =

√−m
where m is a positive integer with m ≡ 1(mod 4), then 2−1/8w(τ) is a
unit [Bir, p.290]. It follows easily from (9.11) that 26|j(τ) and so from
(9.6) we have that u(τ) is also a unit in this case. Similar results for
other τ can also be given by using results from [Bir] in combination
with the identity (9.12).

Finally, we remark that there are other continued fraction expan-
sions for w, u and v, originally established as identities for the corre-
sponding infinite products. The following continued fraction for w
as defined by the product (9.9) was given by Heine [Hei] as early as
1846 by means of Euler’s transformation:

w(τ) =
√

2 q1/24
(
1 + q

1−q+
q3−q2

1+
q5−q3

1+
q7−q4

1+ ···

)
,

for τ ∈ H. In his first paper in 1937, Selberg [Se1] provided the fol-
lowing continued fractions for the products in (9.3) and (9.4):

u(τ) =
√

2 q1/8

1+
q

1+
q+q2

1+
q3

1+
q2+q4

1+ ··· and v(τ) = q1/2

1+
q+q2

1+
q4

1+
q3+q6

1+
q8

1+ ···

for τ ∈ H, and he also established that

(9.13) q1/3

1+
q+q2

1+
q2+q4

1+
q3+q6

1+ ··· = q1/3
∏
n≥1

(1−q6n−1)(1−q6n−5)
(1−q6n−3)2

.

Unknown to Selberg at the time, the last three identities all appear
(without proof) in Ramanujan’s “lost” notebook (see [An1]). We
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leave the treatment of the continued fraction (9.13) using Γ(6) along
the lines of this paper as a (challenging) exercise.

10. Beyond continued fractions

In this final section I will briefly explore the simplest case when
continued fractions are no longer adequate to represent the modular
functions of interest. This happens for Γ(7). However, some of the
themes we have been developing persist, albeit in a more compli-
cated form.

Define the quotient of two infinite determinants |ai,j||bi,j|−1 to be

lim
n→∞

∣∣∣∣
a1,1 a1,2 ... a1,n
a2,1 a2,2 ... a2,n
: : :

an,1 an,2 ... an,n

∣∣∣∣
∣∣∣∣

b1,1 b1,2 ... b1,n

b2,1 b2,2 ... b2,n
: : :

bn,1 bn,2 ... bn,n

∣∣∣∣
−1

,

provided this limit exists. Using an idea going back to Sylvester
[Syl], tri-diagonal determinants yield continued fractions:

a0 + b1
a1 +

b2
a2 +

b3
a3 + ··· =

∣∣∣∣∣
a0 b1 0 0 ...
−1 a1 b2 0 ...
0 −1 a2 b3 ...
0 0 −1 a3 ...
: : : :

∣∣∣∣∣

∣∣∣∣∣
1 0 0 0 ...
0 a1 b2 0 ...
0 −1 a2 b3 ...
0 0 −1 a3 ...
: : : :

∣∣∣∣∣

−1

.

Thus we can express the fundamental unit in Q(
√

5), the real qua-
dratic field with the smallest discriminant 5, as

1+
√

5
2

=

∣∣∣∣
1 1 0 0 ...
−1 1 1 0 ...
0 −1 1 1 ...
: : : :

∣∣∣∣
∣∣∣∣

1 0 0 0 ...
0 1 1 0 ...
0 −1 1 1 ...
: : : :

∣∣∣∣
−1

.

A generalization to cubic number fields of the periodic contin-
ued fraction expansions of real quadratic units was first proposed
by Jacobi [Jac]. Consider the number field L = Q(ε1) ⊂ Q(ζ7), where

ε1 = sin(3π/7)
sin(π/7)

satisfies the equation x3−2x2−x+1 = 0. This is the real cubic number
field with the smallest possible discriminant 72. Now ε1 is a unit
(a cyclotomic unit) that may be expressed as a quotient of periodic
infinite determinants:

(10.1) ε1 =

∣∣∣∣∣
2 1 −1 0 0 ...
−1 2 1 −1 0 ...
0 −1 2 1 −1 ...
0 0 −1 2 1 ...
: : : : :

∣∣∣∣∣

∣∣∣∣∣
1 0 0 0 0 ...
0 2 1 −1 0 ...
0 −1 2 1 −1 ...
0 0 −1 2 1 ...
: : : : :

∣∣∣∣∣

−1

.

Consider for τ ∈ H the function

s(τ) = q−3/7

∣∣∣∣∣∣

1+q q2 −q5 0 0 ...
−1 1+q2 q4 −q8 0 ...
0 −1 1+q3 q6 −q11 ...
0 0 −1 1+q4 q8 ...
: : : : :

∣∣∣∣∣∣

∣∣∣∣∣∣

1 0 0 0 0 ...
0 1+q2 q4 −q8 0 ...
0 −1 1+q3 q6 −q11 ...
0 0 −1 1+q4 q8 ...
: : : : :

∣∣∣∣∣∣

−1

.

This quotient also converges for τ = 0, where it reduces to (10.1).
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By now the reader has likely guessed that s is a modular function,
and in fact it is one for Γ(7). It also has a nice relation with the elliptic
curve E in Tate’s form:

(10.2) y2 + (1 + d− d2)xy + (d2 − d3)y = x3 + (d2 − d3)x2,

for which P = (0, 0) is a point of order 7. To see this, first consider
the modular function

h(τ) = q−1
∏
n≥1

(1−q7n−2)2(1−q7n−5)2(1−q7n−3)(1−q7n−4)
(1−q7n−1)3(1−q7n−6)3

.

It can be shown that h is a Hauptmodul for Γ1(7) that transforms
under the Fricke involution by the formula

h(−1
7τ

) =
h(τ)−ε2

1ε−3
2

ε−1
1 ε−2

2 h(τ)−1
,

where ε2 = sin(2π/7)
sin(π/7)

. Here {ε1, ε2} form a basis for the units of infinite
order in L. Now set d(τ) = h(−1

7τ
). Then the elliptic curve E of (10.2)

with d = d(τ) has

(10.3) j(E) = j(τ) = (d2−d+1)3(d6−11d5+30d4−15d3−10d2+5d+1)3

d7(d−1)7(d3−8d2+5d+1)
.

Furthermore, the function s(τ) is related to h(τ) by the following
identity

(10.4) s7 = h(h− 1)2,

which may be taken as a defining equation for the genus 3 curve
X(7), the famous Klein curve. The special values of s(τ) for a given
j(τ) can now be obtained in much the same way as those of r(τ) by
solving (10.3) for d and then finding s from (10.4) when

h =
d−ε2

1ε−3
2

ε−1
1 ε−2

2 d−1
.

To see that s(τ) is a modular function, consider the determinant
of width 4:

S(z) =

∣∣∣∣∣∣

1+qz q2z2 −q5z3 0 0 ...
−1 1+q2z q4z2 −q8z3 0 ...
0 −1 1+q3z q6z2 −q11z3 ...
0 0 −1 1+q4 q8 ...
: : : : :

∣∣∣∣∣∣
for τ ∈ H, so that

s(τ) = q−3/7S(1)/S(q).

It is easily checked that

(10.5) S(z) = (1 + qz)S(qz) + q2z2S(q2z)− q5z3S(q3z).

Selberg’s paper [Se1] mentioned at the end of §9 studies a gen-
eralization of the auxiliary function used in Rogers’ proof of the
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Rogers-Ramanujan identities. This function is defined for τ ∈ H
and k > −1/2 by

Ck,j(z) = 1− zjqj +
∑
n≥1

(−1)nzknq
1
2
(2k+1)(n2+n)−jn(1− zjq(2n+1)j) (zq,q)n

(q,q)n

where we use the standard notation

(a, q)n = (1− a)(1− aq) · · · (1− aqn−1).

Selberg showed that Ck,j satisfies the recurrence formulas

Ck,−j(z) = −z−jq−jCk,j(z)

Ck,j(z) = Ck,j−1(z) + zj−1qj−1(1− zq)Ck,k−j+1(zq)

and from these derived functional relations for Ck,k(z). In particular,
it can be shown using Selberg’s formulas and (10.5) that

S(z) = C3,3(z)∏
n≥1(1−zqn)

.

Jacobi’s triple product identity (4.8) then yields the identities
∏
n≥1

(1−q7n−3)(1−q7n−4)(1−q7n)
(1−qn)

= S(1)

∏
n≥1

(1−q7n−2)(1−q7n−5)(1−q7n)
(1−qn)

= S(1)− q2S(q2)

∏
n≥1

(1−q7n−1)(1−q7n−6)(1−q7n)
(1−qn)

= S(q).

Thus we have

s(τ) = q−3/7
∏
n≥1

(1−q7n−3)(1−q7n−4)
(1−q7n−1)(1−q7n−6)

= e(1
7
)

θ
[
1/7
1

]
(7τ)

θ
[
5/7
1

]
(7τ)

,

which is seen to be a modular function for Γ(7), as is

t(τ) = q−2/7
∏
n≥1

(1−q7n−2)(1−q7n−5)
(1−q7n−1)(1−q7n−6)

= e( 1
14

)
θ
[
3/7
1

]
(7τ)

θ
[
5/7
1

]
(7τ)

.

From the transformation law (4.5) of the theta constants under g ∈
Γ(1) one shows that

(s(gτ), t(gτ)) = ( as(τ)+bt(τ)+c
a′′s(τ)+b′′t(τ)+c′′ ,

a′s(τ)+b′t(τ)+c′
a′′s(τ)+b′′t(τ)+c′′ )

defines a (projective) representation of Γ(1) that gives an embedding
of Γ(1)/Γ(7) into PSL(3,C). The corresponding invariant theory was
also studied by Klein [Kl3]. For a detailed exposition of this and of
the amazingly rich structure of the modular curve X(7) see [Elk].
The identities (10.3) and (10.4) follow from this theory.
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Much of this development, including Selberg’s recurrence, the
theta representation and the invariant theory, can be generalized to
higher levels. We have already seen this for algebraic properties of
the special values and the CM theory. The role of units invites further
exploration.

Acknowedgements: I thank Barry Mazur and J-P. Serre for their
comments on an earlier version of this paper.

Appendix A

This appendix contains a technical result that is useful to verify
transformation properties of modular functions that are expressed
as the quotient of theta constants with the same integral value of the
bottom characteristic ε′ and the same argument Nτ , for a positive
integer N . It is convenient to let λ denote some eighth root of unity
that does not depend on either ε or τ but whose value may differ in
different expressions.

LEMMA A.1. Assume that ε′ ∈ Z and N ∈ Z+ are fixed. Suppose
ε ∈ Q has the property that Nε ∈ Z. Then, for ( a b

c d ) ∈ SL(2,Z) with
( a b

c d ) ≡ ( 1 0
0 1 ) (mod 2N), we have

(A.1) θ
[

ε
ε′
]
(N(aτ+b

cτ+d
)) = λ

√
cτ − d ν(ε) θ

[
ε
ε′
]
(Nτ),

where ν(ε) = e
(−ε2Nb(a−2)+2εε′(d−1)

8

)
. If ε′ is odd, and N and Nε have the

same parity then (A.1) still holds for ( a b
c d ) ≡ ( 1 ∗

0 1 ) (mod N), provided we
take
(A.2)

ν(ε) =

{
e
(−ε2Nb(a−2)

8

)
, if N and Nε are both odd;

e
(−ε2Nb(a−2)+2εε′(bc+d−1)

8

)
, if N and Nε are both even.

If ε′, N and Nε are all even then (A.1) holds for ( a b
c d ) ≡ ( 1 ∗

0 1 ) (mod 2N),
provided we take ν(ε) = e

(−ε2Nb(a−2)
8

)
.

PROOF. It follows from (4.5) that for any ( a b
c d ) ∈ SL(2,Z) with

c ≡ 0(mod N),

θ
[

ε
ε′
]
(N(aτ+b

cτ+d
)) = θ

[
ε
ε′
] (

a(Nτ)+Nb
(c/N)(Nτ)+d

)

= λ
√

cτ − d e
(−ε(Nabd+bcε′)

4

)
e
(−ε2Nab

8

)
θ
[
aε+(c/N)ε′−ac/N

Nbε+dε′+Nbd

]
(Nτ).(A.3)

Suppose that ( a b
c d ) ≡ ( 1 0

0 1 ) (mod 2N). Clearly

aε + (c/N)ε′ − a(c/N) = ε + 2`(A.4)

and Nbε + dε′ + Nbd = ε′ + 2m(A.5)
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for some integers ` and m. Thus by (4.3) we get

θ
[

ε
ε′
]
(N(aτ+b

cτ+d
))

= λ
√

cτ − d e(−ε Nbd(a−1)−ε′(bc+d−1)
4

) e
(−ε2Nb(a−2)

8

)
θ
[

ε
ε′
]
(Nτ)(A.6)

= λ
√

cτ − d e
(−ε2Nb(a−2)+2εε′(d−1)

8

)
θ
[

ε
ε′
]
(Nτ).

If ε′, N and Nε are all odd and ( a b
c d ) ≡ ( 1 ∗

0 1 ) (mod N), then the
proof of (A.1) is similar but a little trickier. In (A.4) we write a =
1 + Nr and c = Ns for r, s ∈ Z and observe that if r is odd then s
must be odd, since (a, c) = 1. Thus

aε + (c/N)ε′ − a(c/N) = ε + r(Nε−Ns) + s(ε′ − 1) ≡ ε (mod 2),

since if r is odd Nε−Ns must be even. In (A.5) we write d = 1 + Nt
for t ∈ Z to get

Nbε + dε′ + Nbd = ε′ + b(Nε + N2t + N) + Ntε′ ≡ ε′ (mod 2),

which is clear if t is even, while if t is odd then d is even and so b is
odd.

Proceeding as before we get (A.6) but now we observe that

Nbd(a− 1)− ε′(bc + d− 1)

is always divisible by 2N . For this it is enough to show that it is even.
But ad− bc = 1 implies that there are among a, b, c, d either two even
numbers, which are either a and d or b and c, or one even, and the
rest odd. Checking all six cases gives the result. Thus we have that

−Nε Nbd(a−1)−ε′(bc+d−1)
2N

is an integer whose parity does not depend on ε, since Nε is odd.
Returning to (A.6) we see that the first case of (A.2) holds.

The rest of the proof is similar but easier. ¤

References

[An1] G. E. Andrews, An introduction to Ramanujan’s “lost” notebook. Amer.
Math. Monthly 86 (1979), 89–108.

[An2] G. E. Andrews, Ramunujan’s “lost” notebook. III. The Rogers-Ramanujan
continued fraction. Adv. in Math. 41 (1981), no. 2, 186–208.

[Art] E. Artin, Galois theory. Edited and with a supplemental chapter by Arthur
N. Milgram. Reprint of the 1944 second edition. Dover, Mineola, NY, 1998.

[Ask] R. Askey, Orthogonal polynomials and theta functions. Theta functions—
Bowdoin 1987, Part 2 (Brunswick, ME, 1987), 299–321, Proc. Sympos. Pure
Math., 49, Part 2, Amer. Math. Soc., Providence, RI, 1989.

[BC] S. Barnard and J.M. Child, Advanced Algebra. Macmillan, London, 1939.
[Be] B.C. Berndt, Ramanujan’s notebooks. Parts I–V. Springer-Verlag, New York,

1985–1998.



CONTINUED FRACTIONS AND MODULAR FUNCTIONS 29

[BCZ] B. C. Berndt, H. H. Chan and L-C. Zhang, Explicit evaluations of the
Rogers-Ramanujan continued fraction. J. für die reine und angew. Math. 480
(1996), 141–159.

[Ber] W. E. H. Berwick, Modular invariants expressible in terms of quadratic and
cubic irrationalities. Proc. Lon. Math. Soc. (2) 28, 53-69 (1928).

[Bir] B.J. Birch, Weber’s class invariants, Mathematika 16, 283–294 (1969)
[Bor] R. E. Borcherds, What is Moonshine? Proceedings of the International Con-

gress of Mathematicians, Vol. I (Berlin, 1998). Doc. Math. 1998, Extra Vol. I,
607–615

[BCHIS] A. Borel, S. Chowla, C.S. Herz, K. Iwasawa and J-P. Serre, Seminar on
complex multiplication. Seminar held at the Institute for Advanced Study,
Princeton, N.J., 1957-58. Lecture Notes in Mathematics, No. 21 Springer-
Verlag, Berlin-New York 1966

[Bra] R. Brauer, Galois Theory, 1957-1958 Harvard Lecture Notes
[Cox] D. A. Cox, Primes of the form x2 + ny2. Fermat, class field theory and com-

plex multiplication. John Wiley and Sons, Inc., New York, 1989.
[Dar] H. B. C. Darling, Proofs of certain identities and congruences enunciated by

S. Ramanujan. Proc. Lond. M. S. (2) 19, 350-372 (1921).
[Deu] M. Deuring, Die Klassenkörper der komplexen Multiplikation, Enz. Math.

Wiss., Band I-2, Heft 10, Teil II.
[Dic] L. E. Dickson, Modern algebraic theories. Sanborn, New York (1926)
[Eis] G. Eisenstein, Theorema. J. für die reine und angew. Math. 29, 96-97 (1845)

[ #26 in Mathematische Werke. Band I. 289–290. Chelsea Publishing Co., New
York, 1975.]

[Elk] N. D. Elkies, The Klein quartic in number theory. The eightfold way, 51–101,
Math. Sci. Res. Inst. Publ., 35, Cambridge Univ. Press, Cambridge, (1999)

[FK] H. Farkas and I. Kra, Theta constants, Riemann surfaces and the modular
group. American Mathematical Society, Providence, RI, 2001.

[Fol] A. Folsom, On Eisenstein’s continued fractions. Preprint 2004.
[Fri] R. Fricke, Lehrbuch der Algebra, Band 2, Vieweg, Braunschweig, (1926)
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