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Abstract. In this paper we construct certain mock modular forms of weight 1/2 whose Fourier
coefficients are given in terms of cycle integrals of the modular j-function. Their shadows are
weakly holomorphic forms of weight 3/2. These new mock modular forms occur as holomorphic
parts of weakly harmonic Maass forms. We also construct a generalized mock modular form
of weight 1/2 having a real quadratic class number times a regulator as a Fourier coefficient.
As an application of these forms we study holomorphic modular integrals of weight 2 whose
rational period functions have poles at certain real quadratic integers. The Fourier coefficients
of these modular integrals are given in terms of cycle integrals of modular functions. Such a
modular integral can be interpreted in terms of a Shimura-type lift of a mock modular form of
weight 1/2 and yields a real quadratic analogue of a Borcherds product.

1. Introduction

Mock modular forms, especially those of weight 1/2, have attracted much attention recently.
This is mostly due to the discovery of Zwegers [51, 52] that Ramanujan’s mock theta functions
can be completed to become modular by the addition of a certain non-holomorphic function on
the upper half plane H. This complement is associated to a modular form of weight 3/2, the
shadow of the mock theta function. Consider, for example, the q-series

f(τ) = q−1/24
∑
n≥0

qn
2

(1 + q)2 · · · (1 + qn)2

(
q = e(τ) = e2πiτ , τ ∈ H

)
.

Up to the factor q−1/24 this is one of Ramanujan’s original mock theta functions. The shadow
of f is the weight 3/2 cusp form (a unary theta series)

g(τ) =
∑

n∈1+6Z

n qn
2/24;

it is proved in [52] that the completion

f̂(τ) = f(τ) + g∗(τ)

transforms like a modular form of weight 1/2 for Γ(2), the well known congruence subgroup of
Γ = PSL(2,Z), when

g∗(τ) =
∑

n∈1+6Z

sgn(n) β(n
2y
6

) q−n
2/24

(
y = Im τ

)
.

Here β(x) is defined for x > 0 in terms of the complementary error function and the standard
incomplete gamma function by

(1.1) β(x) = erfc(
√
πx) =

1√
π

Γ(1
2
, πx), where Γ(s, x) =

∞∫
x

tse−t dt
t
.
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Observe that the Fourier expansion of the non-holomorphic “Eichler integral” g∗(τ) mirrors
that of g(τ). In addition to leading to a number of new results about mock theta functions, the
work of Zwegers has stimulated the study of other kinds of mock modular forms as well (see
[38] and [50] for surveys on some of these developments).

In this paper we will consider mock modular forms of weight 1/2 for Γ0(4). In some sense
this is the simplest case, but has not been treated before because the associated shadows, if
not zero, cannot be cusp forms. We will show that they are nevertheless quite interesting,
and have remarkable connections with cycle integrals of the modular j-function and modular
integrals having rational period functions. First let us define mock modular forms precisely in
this context. Let

θ(τ) = 1 + 2 q + 2 q4 + 2 q9 + 2 q16 + · · ·
be the Jacobi theta series, which is a modular form of weight 1/2 for Γ0(4). Set

(1.2) j(γ, τ) = θ(γτ)/θ(τ) for γ ∈ Γ0(4).

For k ∈ 1/2 + Z say that f defined on H has weight k for Γ0(4) (or simply has weight k) if

f(γτ) = j(γ, τ)2kf(τ) for all γ ∈ Γ0(4).

Let M !
k be the space comprising functions holomorphic on H of weight k for Γ0(4) whose Fourier

coefficients a(n) in the expansion f(τ) =
∑

n a(n)qn are supported on integers n ≥ −∞ with
(−1)k−1/2n ≡ 0, 1 (mod 4).

Specializing now to the case of weight 1/2, let E(z) be the entire function given by any of
the following formulas

(1.3) E(z) =

∫ 1

0

e−πzu
2

du =
erf(
√
πz)

2
√
z

=
∞∑
n=0

(−πz)n

(2n+ 1)n!
.

For any g(τ) =
∑

n bn q
n ∈M !

3/2 we define the non-holomorphic Eichler integral of g by

(1.4) g∗(τ) = −4
√
y
∑
n≤0

bn E(4ny) q−n +
∑
n>0

bn√
n
β(4ny)q−n.

Let f(τ) =
∑

n anq
n be holomorphic on H and such that its coefficients an are supported on

integers −∞ < n ≡ 0, 1 (mod 4). We will say that f(τ) is a mock modular form of weight 1/2
for Γ0(4) if there exists a g ∈M !

3/2, its shadow, so that

f̂(τ) = f(τ) + g∗(τ)

has weight 1/2 for Γ0(4). Denote by M1/2 the space of all mock modular forms of weight 1/2
for Γ0(4). Obviously M !

1/2 ⊂ M1/2 but it is not at all clear that there are any non-modular
mock modular forms.

We will show that they do exist and that they are related to the work of Borcherds and
Zagier on traces of singular moduli of the classical j-function

j(τ) = q−1 + 744 + 196884 q + · · · .
It is well-known and easily shown that C[j], has a unique basis {jm}m≥0 whose members are of
the form jm(τ) = q−m + O(q). For example

(1.5) j0 = 1, j1 = j − 744, j2 = j2 − 1488j + 159768, . . . .

Here j1(τ) is the normalized Hauptmodule for Γ. In this paper, unless otherwise specified, d
is assumed to be an integer d ≡ 0, 1(mod 4) and is called a discriminant if d 6= 0. For each
discriminant d let Qd be the set of integral binary quadratic forms of discriminant d that are
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positive definite if d < 0. The forms are acted on as usual by Γ, resulting in finitely many
classes Γ\Qd. Let ΓQ be the group of automorphs of Q (see section 3 for more details).

Suppose that d < 0. For Q ∈ Qd and τQ a root of Q in H, the numbers j1(τQ) are known
by the classical theory of complex multiplication to form a Gal(Q̄/Q)-invariant set of algebraic
integers, so that their weighted sum

(1.6) Trd(j1) =
∑

Q∈Γ\Qd

|ΓQ|−1j1(τQ)

is an integer. A beautiful theorem of Zagier [49] asserts that these integers give the Fourier
coefficients of a weight 3/2 weakly holomorphic form in T−(τ) ∈M !

3/2:

T−(τ) = −q−1 + 2 +
∑
d≤0

Trd(j1)(d)q|d|(1.7)

= −q−1 + 2− 248 q3 + 492 q4 − 4119 q7 + 7256 q8 + · · · .

A natural question is whether one can give a similar statement for the numbers Trd(j1)
defined for non-square d > 0 by

(1.8) Trd(j1) = 1
2π

∑
Q∈Γ\Qd

∫
CQ

j1(τ) dτ
Q(τ,1)

.

Here CQ is any smooth curve from any z ∈ H to g
Q
z, where gQ is a certain distinguished

generator (see (3.1)) of the infinite cyclic group ΓQ of automorphs of Q. Note: Trd(j1) is
well-defined. We will see that the generating function

(1.9) T+(τ) =
∑
d>0

Trd(j1)qd

(with a suitable definition of Trd(j1) when d is a perfect square) defines a mock modular form
of weight 1/2 for Γ0(4) with shadow T−(τ) from (1.7).

Theorem 1. The function T̂+(τ) on H defined by

T̂+(τ) = T+(τ) + T∗−(τ)

=
∑
d>0

Trd(j1) qd + 4
√
y E(−4y) q − 8

√
y +

∑
d<0

Trd(j1)√
|d|

β(4|d| y) qd

has weight 1/2 for Γ0(4).

Zagier [49] showed that g1(τ) = T−(τ) from (1.7) is the first member of a basis {gd}0<d≡0,1(4)

for M !
3/2, where for each d > 0 the function gd(τ) is uniquely determined by having a q-expansion

of the form1

(1.10) gd(τ) = −q−d +
∑
n≤0

n≡0,1(mod 4)

a(d, n)q|n|.

We define a(d, n) = 0 unless d, n ≡ 0, 1 (mod 4). For d ≤ 0 consider the “dual” form

(1.11) fd(τ) = qd +
∑
n>0

a(n, d)qn.

1This is the negative of the gd(τ) defined in [49].
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As was shown in [49], the set {fd}d≤0 coincides with the basis given by Borcherds [2] for M !
1/2.

Thus f0(τ) = θ(τ) and the first few terms of the next function are

f−3(τ) = q−3 − 248q + 26752q4 − 85995q5 + 1707264q8 + · · · .
We will show that Borcherds’ basis extends naturally to a basis for M1/2. The construction of
this extension relies heavily on the spectral theory of Maass forms.

Theorem 2. For each d > 0 there is a unique mock modular form fd(τ) ∈ M1/2 with shadow
gd(τ) having a Fourier expansion of the form

(1.12) fd(τ) =
∑
n>0

a(n, d)qn.

These Fourier coefficients a(n, d) satisfy a(n, d) = a(d, n). The set {fd}d≡0,1(mod 4) gives a basis
for M1/2.

We have thus defined a(n, d) for all d, n with n > 0. We use them to evaluate certain twisted
traces, which we now define. Suppose that D > 0 is a fundamental discriminant. There is a
function χD : QdD → {−1, 1} defined below in (3.2) that restricts to a real character (a genus
character) on the group of primitive classes and can be used to define a general twisted trace
for dD not a square by

(1.13) Trd,D(jm) =

{
1√
D

∑
χ(Q)|ΓQ|−1jm(τQ), if dD < 0 ;

1
2π

∑
χ(Q)

∫
CQ
jm(τ) dτ

Q(τ,1)
if dD > 0,

each sum being over Q ∈ Γ\QdD. We have the following evaluation, which generalizes a well-
known result of Zagier [49, (25)] to include positive d.

Theorem 3. Let a(n, d) be the mock modular coefficients defined in (1.11) and ( 1.12). Suppose
that m ≥ 1. For d ≡ 0, 1 (mod 4) and fundamental D > 0 with dD not a square we have

(1.14) Trd,D(jm) =
∑
n|m

(
D
m/n

)
n a(n2D, d).

Together with Theorem 2, Theorem 3 implies Theorem 1 after we define Trd(j1) to be equal
to a(d, 1) when d is a perfect square. The proof we give uses Poincaré series and a Kloosterman
sum identity that generalizes a well-known result of Salié. In particular, for non-square dD
with D > 0, Theorem 3 gives

(1.15) a(D, d) =

{
1√
D

∑
χ(Q)|ΓQ|−1j1(τQ), if dD < 0;

1
2π

∑
χ(Q)

∫
CQ
j1(τ) dτ

Q(τ,1)
, if dD > 0,

where each sum is over Q ∈ Γ\QdD.
Concerning the case m = 0, there exists an interesting “second order” mock modular form

Z+(τ) of weight 1/2 that is almost, but not quite, in M1/2 with Fourier expansion

(1.16) Z+(τ) =
∑
d>0

Trd(1) qd.

Here Trd(1) must be defined suitably for square d while for d > 1 a fundamental discriminant
we have

Trd(1) = π−1d−1/2 h(d) log εd,

where h(d) is the narrow class number of Q(
√
d) and εd is its smallest unit > 1 of norm 1. A

(generalized) shadow of Z+(τ) is the completion of the mock modular form Z−(τ) of weight
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3/2 with shadow θ(τ) discovered by Zagier in 1975 [47] (see also [20]) whose Fourier expansion
is

(1.17) Z−(τ) =
∑
d≤0

Trd(1)q|d|.

Here for any d ≤ 0 we have that Trd(1) = H(|d|), the usual Hurwitz class number, whose first
few values are given by

H(0) = − 1
12
, H(3) = 1

3
, H(4) = 1

2
, H(7) = 1, . . . .

The completion of Z−(τ), which has weight 3/2 for Γ0(4) is given by

(1.18) Ẑ−(τ) = Z−(τ) +
1

16π

∑
n∈Z

Γ(−1
2
, 4πn2y)q−n

2

.

Define for y > 0 the special function

α(y) =

√
y

4π

∫ ∞
0

t−1/2 log(1 + t)e−πytdt.

The next result shows that Z+(τ) from (1.16) has Ẑ−(τ) as a generalized shadow (to be made
precise later.)

Theorem 4. The function Ẑ+(τ) whose Fourier expansion is given by

Ẑ+(τ) =
∑
d>0

Trd(1) qd +

√
y

3
+
∑
d<0

Trd(1)√
|d|

β(4|d|y)qd +
∑
n6=0

α(4n2y)qn
2 − 1

4π
log y,(1.19)

has weight 1/2 for Γ0(4).

The automorphic nature of Ẑ+(τ) gives some reason to hope that there might be a connection
between the cycle integrals of j and abelian extensions of real quadratic fields. So far this hope
has not been realized.

Finally, there is an unexpected connection between mock modular forms of weight 1/2 and
modular integrals having rational period functions. Define for each d ≡ 0, 1(mod 4)

(1.20) Fd(τ) = −Trd(1)−
∑
m≥1

(∑
n|m

n a(n2, d)
)
qm.

Note that Fd(τ) is the derivative of the formal Shimura lift of fd. When d < 0 Borcherds
showed that Fd is a meromorphic modular form of weight 2 for Γ having a simple pole with
residue |ΓQ|−1 at each point τQ ∈ H of discriminant d. Thus one has corresponding properties
of the infinite product

q−Trd(1)
∏
m≥1

(1− qm)a(m2,d).

In case d = 0 one finds that this product is ∆(τ)1/12, and we have that

F0(τ) = 1
12
− 2

∑
n≥1

σ(m)qm = 1
12
E2(τ).

This is a holomorphic modular integral of weight 2 with a rational period function:

F0(τ)− τ−2F0(− 1
τ
) = − 1

2πi
τ−1.
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Theorem 5. For each d > 0 not a square the function Fd defined in (1.20) is a holomorphic
modular integral of weight 2 with a rational period function:

(1.21) Fd(τ)− τ−2Fd(− 1
τ
) =

1

π

∑
c<0<a

b2−4ac=d

(aτ 2 + bτ + c)−1.

The Fourier expansion of Fd(τ) can be expressed in the form

Fd(τ) = −
∑
m≥0

Trd(jm) qm.

Note that the period function has simple poles at certain real quadratic integers of discrim-
inant d, in analogy to the behavior of Fd(τ) when d < 0. The existence of a holomorphic F
satisfying (1.21) with growth conditions was proved by Knopp [28], [29]. He used a certain
Poincaré series built out of cocycles, which was used earlier by Eichler [13], to construct it.
However, it appears to be very difficult to compute F explicitly from this construction. At the
end of their paper [8], Choie and Zagier raised the problem of explicit construction of a modular
integral with a given rational period function. Parson [39] gave a more direct construction in
weights k > 2 using series of the form∑

a>0

(aτ 2 + bτ + c)−k/2,

which are partial versions of certain hyperbolic Poincaré series studied by Zagier, but they
do not converge when k = 2. In any case, the expression of the Fourier coefficients as sums
of cycle integrals is not immediate from this construction, although it is possible to deduce
such expressions this way, at least in higher weights, using methods from this paper. For the
rational period functions that occur in (1.21) the modular integral given by Fd(τ) also gives a
real quadratic analogue of (the logarithmic derivative of) the Borcherds product.

Table 1. Traces for d < 0

m Tr−3(jm) Tr−4(jm) Tr−7(jm) Tr−8(jm)
0 1/3 1/2 1 1
1 −248 492 −4119 7256
2 53256 287244 16572393 52255768
3 −12288992 153540528 −67515202851 377674781024

Table 2. Traces for d > 0

m Tr5(jm) Tr8(jm) Tr12(jm) Tr13(jm) Tr17(jm) Tr20(jm)
0 0.13700 0.19837 0.24202 0.21095 0.32343 0.33097
1 −5.16163 −6.76613 −8.27912 −6.49263 −10.65828 −8.36253
2 −11.56343 −17.92434 −21.49601 −19.16428 −28.46829 −23.93151
3 −14.31225 −19.50182 −24.84575 −21.99742 −34.17310 −29.69296

It is interesting to examine numerical values of the traces Trd(jm). We remark that for d > 1
fundamental we have the identity

(1.22) Trd(jm) =
∑
n|m

(
d

m/n

)
n−1 Trn2d(j1).
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This result is a consequence of a general identity on Hecke operators proved in [48]. As a
numerical check, the reader can verify that the identity (1.22) holds for d = 5, D = 1 and
m = 2. For d = 20 there are two classes, represented by [1, 4,−1] and the non-primitive form
[2, 2,−2], and (1.22) amounts to the curious identity∫

C[1,4,−1]

j1(τ) 2dτ
τ2+4τ−1

=

∫
C[1,1,−1]

j2(τ) dτ
τ2+τ−1

.(1.23)

In general, a comparison shows that the traces for positive discriminants are generally much
smaller than those for negative discriminants and appear to exhibit some regular growth be-
havior in both d and m. For non-square d > 1 and m ∈ Z+ we will see that we have the
conditionally (and slowly) convergent expansion

(1.24) Trd(jm) = −24σ1(m)Trd(1) + d−1/2
∑

0<c≡0(4)

Sm(d; c) sin
(

4πm
√
d

c

)
,

where

Sm(d; c) =
∑

b2≡d(mod c)

e
(

2mb
c

)
.

It is natural to expect that the first term dominates as either m or d gets large, which would
in particular imply that as d→∞ through non-squares we have the asymptotic formula

(1.25) Trd(jm) ∼ −24σ1(m) Trd(1).

Such a result is known for negative discriminants (see [9]) except that then there is a large main

term that grows like eπm
√
|d|. If true, this asymptotic would indicate that there is tremendous

cancellation in the integrals of j over the cycles when d is large, since Trd(1)�ε d
ε and jm has

exponential growth in the cusp.
After seeing our paper, Y. Manin and D. Zagier told us that M. Kaneko also performed

calculations of cycle integrals of the j function. Kaneko kindly sent us his paper [26], in
which he calculated the individual cycle integrals numerically and observed some interesting
behaviour in the distribution of their values. This behavior appears to us to be consistent with
the conjectured asymptotic given above.

Finally, we remark that there is an obvious similarity between Theorem 3 and the formula of
Katok and Sarnak [27] for the traces of a Maass cusp form. The main difference is that there
are no Hecke eigenforms in our setting. Nevertheless, the method we use to prove Theorem 3,
which involves Poincaré series and identities between Kloosterman sums, can be applied to give
another proof of the Katok-Sarnak formula. It would be interesting to approach our results
using a regularized theta lift. (See [16], [5] for the use of regularized theta lifts in the negative
discriminants case.) Another interesting problem is to understand the nature of the traces on
square discriminants.

Acknowledgements: We thank D. Zagier and the referee for numerous and extremely helpful
comments on earlier versions of this paper. Duke and Tóth gratefully acknowledge the generous
support of the Forschungsinstitut für Mathematik at ETH Zürich for this research. They also
thank Marc Burger and the staff of FIM for providing a stimulating and comfortable atmosphere
during their visits to Zürich.
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2. Weakly harmonic modular forms

We begin by proving Theorem 2 using the theory of weakly harmonic forms. Set k ∈ 1/2+Z.
If f of weight k for Γ0(4) is smooth, for example, it will have a Fourier expansion in each cusp.
For the cusp at i∞ we have the Fourier expansion

(2.1) f(τ) =
∑
n

a(n; y)e(nx)

which, if f is holomorphic, has a(n; y) = a(n)e(niy). Set

(2.2) f e(τ) =
∑
n≡0(2)

a(n; y
4
)e(nx

4
) and f o(τ) =

∑
n≡1(2)

a(n; y
4
)e(n

8
)e(nx

4
).

Suppose that the Fourier coefficients a(n; y) satisfy the plus space condition, meaning that they
vanish unless (−1)k−1/2n ≡ 0, 1 (mod 4). An easy extension of arguments given in [33, p.190]
shows that such an f satisfies

(2τ
i

)−kf(− 1
4τ

) = αf e(τ) and (2τ+1
i

)−kf( τ
2τ+1

) = αf o(τ)(2.3)

where

α = (−1)b
2k+1

4
c2−k+ 1

2 .

In particular, the behavior of such an f at the cusps 0 and 1/2 is determined by that at i∞.
Thus to check that such a form is weakly holomorphic, meaning it is holomorphic on H and
meromorphic in the cusps, one only needs look at the Fourier expansion at i∞, as we have done
in the Introduction. As there, let M !

k denote the space of all such forms. Let M+
k ⊂M !

k denote
the subspace of holomorphic forms (having no pole in the cusps) and S+

k ⊂ M+
k the subspace

of cusp forms (having zeros there).
Consider the Maass-type differential operator ξk defined for any k ∈ R through its action on

a differentiable function f on H by

ξk(f) = 2iyk ∂f
∂τ̄
.

This operator is studied in some detail in [6]. It is easily checked that

ξk
(
(γτ + δ)−kf(gτ)

)
= (γτ + δ)k−2(ξkf)(gτ)

for any g ∈ PSL(2,R). Thus if f(τ) has weight k for Γ0(4) then ξkf has weight 2 − k and
ξkf = 0 if and only if f is holomorphic. Also ξk preserves the plus space condition. The weight
k Laplacian can be conveniently defined by

(2.4) ∆k = −ξ2−k ◦ ξk.

Specializing now to k = 1/2, suppose that h is a real analytic function on H of weight 1/2
for Γ0(4) that is harmonic on H in the sense that

(2.5) ∆1/2h = 0.

By separation of variables every such h has a (unique) Fourier expansion in the cusp at ∞ of
the form

h(τ) =
∑
n

b(n)Mn(y)e(nx) +
∑
n

a(n) Wn(y)e(nx).(2.6)
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The functions Wn(y) and Mn(y) in the Fourier expansion (2.6) are defined in terms of the
functions β(x) and E(z) from (1.1) and (1.3) by

Wn(y) =e−2πny


|n|− 1

2 β(4|n|y) if n < 0,

−4y
1
2 if n = 0,

n−
1
2 if n > 0,

(2.7)

Mn(y) =e−2πny


1− β(4|n| y) if n < 0,

1 if n = 0,

4(ny)
1
2 E(−4ny) if n > 0.

(2.8)

We remark that Wn(y) and Mn(y) are special cases of Whittaker functions, (see (2.16)) and we
use the notation W and M to suggest this relation. More importantly, the definitions (2.7) and
(2.8) make possible the complete symmetry of the Fourier coefficients of the basis to be given
in the next Proposition. It becomes clear after working with them that one can define the
normalization for the Fourier coefficients in different reasonable ways, each with advantages
and disadvantages. Note that the function Wn(y) is exponentially decaying while Mn(y) is
exponentially growing in y (see (A.4)).

Let H !
1/2 denote the space of all real analytic functions on H of weight 1/2 for Γ0(4) that

satisfy (2.5), whose Fourier coefficients at ∞ are supported on integers n with n ≡ 0, 1(mod 4)
and that have only finitely many non-zero coefficients b(n). As before this is enough to control
bad behavior in the other cusps. We will call such an h ∈ H !

1/2 weakly harmonic.2 This space

was identified by Bruinier and Funke [5] as being interesting arithmetically. It follows easily
from its general properties that ξ1/2 maps H !

1/2 to M !
3/2 with kernel M !

1/2. This is also directly

visible after a calculation from (2.8) and (2.7) yields the formulas

(2.9) ξ1/2

(
Mn(y)e(nx)

)
= 2|n|

1
2 q−n ξ1/2

(
Wn(y)e(nx)

)
=

{
0 if n > 0

−2q|n| if n ≤ 0.

Given h in (2.6) with b(n) = 0 for all n, we infer that ξ1/2h ∈ M+
3/2 = {0}. This implies that

h ∈ S+
1/2 = {0}, and proves the following uniqueness result.

Lemma 1. If h ∈ H !
1/2 has Fourier expansion

h(τ) =
∑
n

b(n)Mn(y)e(nx) +
∑
n

a(n) Wn(y)e(nx),(2.10)

then h = 0 if and only if b(n) = 0 for all n ≡ 0, 1 (mod 4).

It is now easy to explain the relation between mock modular forms and weakly harmonic
ones (c.f. [50]). It follows easily from (2.7), (2.8) and (2.9), or directly, that for g(τ) ∈M !

3/2

ξ1/2 g
∗(τ) = −2 g(τ),

where g∗(τ) was defined in (1.4). As a consequence we see that if f ∈ M1/2 and if f̂ = f + g∗

is its completion, then f̂ ∈ H !
1/2 since ξ1/2 f̂(τ) = −2g(τ) so ∆1/2f̂ = 0. Also f̂(τ) satisfies the

plus space condition. In fact it is easy to see that f 7→ f̂ defines an isomorphism from M1/2 to
H !

1/2. Given h ∈ H !
1/2 let g = −1

2
ξ1/2(h) ∈M !

3/2 and take h+ = h− g∗. It is easily checked that

2The definition of harmonic weak Maass forms, for example as given in [7] and elsewhere, is more restrictive
and does not apply to the non-holomorphic h ∈ H !

1/2, so we use the terminology weakly harmonic to avoid
confusion.
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h 7→ h+ gives the inverse of f 7→ f̂ . Call h+ the holomorphic part of h. In terms of the Fourier
expansion (2.6)

(2.11) h+(τ) =
∑
n≤0

b(n)qn +
∑
n>0

a(n)n−1/2qn.

The next result gives one natural basis for H !
1/2.

Proposition 1. For each d ≡ 0, 1 (mod 4) there is a unique hd ∈ H !
1/2 with Fourier expansion

of the form

(2.12) hd(τ) = Md(y)e(dx) +
∑

n≡0,1(4)

ad(n)Wn(y)e(nx).

The set {hd}d≡0,1 (4) forms a basis for H !
1/2. The coefficients ad(n) satisfy the symmetry relation

(2.13) ad(n) = an(d)

for all integers n, d ≡ 0, 1 (mod 4). When d > 0 we have

(2.14) ξ1/2 hd(τ) = −2d
1
2 gd(τ),

where gd ∈M !
3/2 has Fourier expansion given in (1.10).

Theorem 2 is an immediate consequence of this proposition. We see that for d ≤ 0 we have
that hd = fd from (1.11) and a(n, d) = n−1/2ad(n) unless n = d < 0, in which case ad(d) = |d|1/2.
If d > 0 let fd(τ) =

∑
n>0 a(n, d)qn be the holomorphic part of d−1/2 hd. This gives the fd(τ)

from Theorem 2 and we find that for n > 0 we have

(2.15) a(n, d) = (dn)−1/2ad(n).

We remark that the fact we quoted from [49] that {fd}d≤0 from (1.11) gives the Borcherds basis
for M !

1/2 also follows from the symmetry relation (2.13) and (2.14) of Proposition 1.
We now turn to the construction of hd. We will give a uniform construction using Poincaré

series. Due to some delicate convergence issues that arise from this approach, we will define
them through analytic continuation. For fixed s with Re(s) > 1/2 and n ∈ Z let

Mn(y, s) =

{
Γ(2s)−1(4π|n|y)−

1
4M 1

4
sgnn,s− 1

2
(4π|n|y) if n 6= 0,

ys−
1
4 if n = 0

Wn(y, s) =

{
|n|− 3

4 Γ(s+ sgnn
4

)−1(4πy)−
1
4W 1

4
sgnn,s− 1

2
(4π|n|y), if n 6= 0

22s− 1
2

(2s−1)Γ(2s−1/2)
y

3
4
−s, if n = 0,

where M and W are the usual Whittaker functions (see Appendix A). By (A.6) and (A.7), for
n 6= 0 we have that

(2.16) Mn(y) = Mn(y, 3/4) and Wn(y) = Wn(y, 3/4)

where Mn(y) and Wn(y) were given in (2.8) and (2.7). However, M0(y) = W0(y, 3/4) and
W0(y) = M0(y, 3/4).3 We also need the usual I and J-Bessel functions, defined for fixed ν and
y > 0 by (see e.g. [34])

(2.17) Iν(y) =
∞∑
k=0

(y/2)ν+2k

k! Γ(ν + k + 1)
and Jν(y) =

∞∑
k=0

(−1)k(y/2)ν+2k

k! Γ(ν + k + 1)
.

3This notational switching is inessential but gives a cleaner statement of Proposition 1 and some other results.



CYCLE INTEGRALS OF THE J-FUNCTION 11

For m ∈ Z let

(2.18) ψm(τ, s) = Mm(y, s)e(mx).

It follows from (A.3) and (2.4) that

∆1/2ψm(τ, s) = (s− 1
4
)(3

4
− s)ψm(τ, s).

Define the Poincaré series

Pm(τ, s) =
∑

g∈Γ∞\Γ0(4)

j(g, τ)−1ψm(gτ, s),

where Γ∞ is the subgroup of translations. By (A.5) this series converges absolutely and uni-
formly on compacta for Re s > 1. The function P0(τ, s) is the usual weight 1/2 Eisenstein
series. It is clear that for Re(s) > 1 and any m the function Pm(τ, s) has weight 1/2 and that
Pm satisfies

∆1/2Pm(τ, s) = (s− 1
4
)(3

4
− s)Pm(τ, s).

As in [32], in order to get forms whose Fourier expansions are supported on n ≡ 0, 1 (mod 4)
we will employ the projection operator pr+ = 2

3
(U4 ◦W4) + 1

3
, where

(U4f)(τ) = 1
4

∑
ν mod 4

f
(
τ+ν

4

)
and (W4f)(τ) =

(
2τ
i

)−1/2
f(−1/4τ).

For each d ≡ 0, 1 (mod 4) and Re(s) > 1 define

(2.19) P+
d (τ, s) = pr+(Pd(τ, s)).

Proposition 2. For any d ≡ 0, 1 (mod 4) and Re(s) > 1 the function P+
d (τ, s) has weight 1/2

and satisfies

∆1/2P
+
d (τ, s) = (s− 1

4
)(3

4
− s)P+

d (τ, s).

Its Fourier expansion is given by

P+
d (τ, s) =Md(y, s)e(dx) +

∑
n≡0,1(4)

bd(n, s)Wn(y, s)e(nx), where(2.20)

bd(n, s) =
∑

0<c≡0(4)

K+(d, n; c)×


2

1
2π|dn| 14 c−1I2s−1

(
4π
√
|dn|
c

)
if dn < 0;

2
1
2π|dn| 14 c−1J2s−1

(
4π
√
|dn|
c

)
if dn > 0,

πs+
1
4 |d+ n|s− 1

4 c−2s if dn = 0, d+ n 6= 0,

2
1
2
−2sπ

1
2 Γ(2s)c−2s if d = n = 0.

(2.21)

The sum defining each bd(n, s) is absolutely convergent.

Proof. The first statement is clear. So is the last statement using the trivial bound for
K+(d, n; c) and the definitions (2.17).

For the calculation of the Fourier expansion we employ the following lemma, whose proof
is standard and follows from an application of Poisson summation using an integral formula
found in [15, p. 176]. See [30, Lemma 2, p. 20] or [32] for the prototype result.
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Lemma 2. Let ( a bc d ) ∈ SL(2,R) have c > 0 and suppose that Re(s) > 1/2. Then for ψm
defined in (2.18) with any m ∈ Z, we have∑

r∈Z

(c(τ + r) + d)−1/2ψm

(
a(τ + r) + b

c(τ + r) + d
, s

)
= 2πi−1/2

∑
n∈Z

e
(
am+nd

c

)
Wn(y, s)e(nx)

×


c−1|mn| 14J2s−1(4π

√
|mn|c−1) if mn > 0

c−1|mn| 14 I2s−1(4π
√
|mn|c−1) if mn < 0

2−
1
2πs−

3
4 c−2s|m+ n|s− 1

4 if mn = 0, m+ n 6= 0,

π−
1
2 (2c)−2sΓ(2s) if m = n = 0,

where both sides of the identity converge uniformly on compact subsets of H.

With this Lemma, the computation of the Fourier coefficients parallels so closely that given
in [30, pp. 18–27] in the holomorphic case that we will omit the details. �

It is a well-known consequence of the theory of the resolvent kernel that Pd(τ, s) has an
analytic continuation in s to Re(s) > 1/2 except for possibly finitely many simple poles in
(1/2, 1). These poles may only occur at points of the discrete spectrum of ∆1/2 on the Hilbert
space consisting of weight 1/2 functions f on H that satisfy∫

Γ\H
|f(τ)|2y dµ <∞ (dµ = y−2dx dy),

and this space contains the residues.4 It is easily seen from (2.19) that P+
d (τ, s) also has

an analytic continuation to Re(s) > 1/2 with at most finitely many simple poles in (1/2, 1).
Actually, such poles can only occur in (1

2
, 3

4
], since by (3.7) and (2.17) the series in (2.21) giving

the Fourier coefficient bd(n, s) converges absolutely for Re(s) > 3/4. Thus for Re(s) > 1/2 away
from these poles the function P+

d (τ, s) has weight 1/2 and satisfies

∆1/2P
+
d (τ, s) = (s− 1

4
)(3

4
− s)P+

d (τ, s).

Furthermore a residue at s = 3/4 is a weight 1/2 weakly harmonic form f ∈ H !
1/2. In fact, the

Fourier expansion of f can be obtained from that of P+
d in (2.20) by taking residues term by

term, a process that is easily justified using the integral representations for the Fourier coeffi-
cients since the convergence is uniform on compacta. This shows that the Fourier expansion
of f is supported on n with n ≡ 0, 1 (mod 4) and that it can have no exponentially growing
terms. Another way to see these facts is to observe that f is the projection of the residue of
Pd, which comes from the discrete spectrum. Thus by Lemma 1 applied to f − b(0)θ, we obtain
the following result.

Lemma 3. For each d and each τ ∈ H the function P+
d (τ, s) has an analytic continuation

around s = 3/4 with at most a simple pole there with residue

(2.22) ress=3/4P
+
d (τ, s) = ρd θ(τ),

where ρd ∈ C.

When d = 0 this result is well-known. In fact, b0(n, s) can be computed in terms of Dirichlet
L-functions. We have the following formulas (see e.g. [23]).

4See [15, p.179 ] and its references, especially [40] and [14]. A very clear treatment when the weight is 0 and
the multiplier is trivial is given in [36]. In particular, see Satz 6.8 p.60; the case of weight 1/2 is similar.
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Lemma 4. For m ∈ Z+ and D a fundamental discriminant we have that∑
n|m

(
D
n

)
b0(Dm

2

n2 , s) =22−4sπs+
1
4m

3
2
−2s|D|s−

1
4σ4s−2(m)

LD(2s− 1
2
)

ζ(4s− 1)
and(2.23)

b0(0, s) =π
1
2 2

5
2
−6sΓ(2s)

ζ(4s− 2)

ζ(4s− 1)
,(2.24)

where LD is the Dirichlet L-function.

By Möbius inversion, (2.23) gives for m 6= 0 the identity

(2.25) b0(Dm2, s) = 22−4sπs+
1
4 |D|s−

1
4
LD(2s− 1/2)

ζ(4s− 1)

∑
n|m

µ(m/n)
(

D
m/n

)
n

3
2
−2sσ4s−2(n).

This yields a direct proof of Lemma 3 in case d = 0. Since b0(d, s) = bd(0, s), which is clear
from (3.4) and (2.21), a calculation using (2.25) and the (2.24) also gives the constant ρd in
(2.22):

(2.26) ρd =


3

4π
if d = 0,

6
π

√
d if d is a non-zero square,

0 otherwise.

We are finally ready to define the basis functions hd. For d 6= 0 let

(2.27) hd(τ, s) = P+
d (τ, s)− bd(0, s)

b0(0, s)
P+

0 (τ, s).

It has the Fourier expansion

hd(τ, s) = Md(y, s)e(dx)− bd(0, s)

b0(0, s)
ys−

1
4 +

∑
06=n≡0,1(4)

ad(n, s)Wn(y, s)e(nx), where(2.28)

ad(n, s) =bd(n, s)−
bd(0, s)b0(n, s)

b0(0, s)
.(2.29)

Lemma 5. For each nonzero d ≡ 0, 1 (mod 4) the function hd(τ, s) defined in (2.27) has an
analytic continuation to s = 3/4 and

hd(τ, 3/4) = hd(τ) ∈ H !
1/2.

The Fourier expansion of each such hd at ∞ has the form (2.12), where for each nonzero
n ≡ 0, 1 (mod 4) we have

ad(n) = lim
s→3/4+

ad(n, s).

Furthermore, ad(0) = 2
√
d if d is a square and ad(0) = 0 otherwise.

Proof. Observe that hd(τ, s) defined in (2.27) is holomorphic at s = 3/4, since otherwise by
Proposition 3 it would have as residue there a nonzero multiple of θ(τ), which cannot happen
since (2.28) does not yield the constant term in θ. From (2.28) its Fourier expansion is given
by

hd(τ) = Md(y)e(dx) +
∑

n≡0,1(4)

ad(n)Wn(y)e(nx),
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where ad(n) = lims→3/4+ ad(n, s) for n 6= 0 and, after recalling the definition of W0(y) from
(2.7), we have that

(2.30) ad(0) = lim
s→3/4+

bd(0, s)

4b0(0, s)
.

Here again we use the integral representations for the Fourier coefficients and the fact that
hd(τ, s) → hd(τ) uniformly on compacta as s → 3/4+. Thus hd ∈ H !

1/2 for all d 6= 0. The last

statement of Lemma 5 can easily be obtained from (2.30), (2.25) and (2.24). �

Continuing with the proof of Proposition 1, we next show that the symmetry relation (2.13)
holds. By (3.4) and (2.21) we have that bd(n, s) = bn(d, s), hence by (2.29)

(2.31) ad(n, s) = an(d, s).

Now (2.13) follows from Lemma 5 and (2.31), where we use that h0 = θ in case nd = 0.
Note that a0(0) = 0. A direct calculation using (2.9) together with (2.13) yields (2.14). This
completes the proof of Proposition 1 and hence of Theorem 2.

3. Binary quadratic forms and Kloosterman sums

Before turning to the proof of Theorem 3, we need to give some basic results about binary
quadratic forms and Kloosterman sums. Recall that Qd is the set of integral binary quadratic
forms Q(x, y) = ax2 + bxy+ cy2 = [a, b, c] of discriminant d = b2−4ac that are positive definite
if d < 0. Let Q+

d ⊂ Qd be those forms with a > 0, so that Qd = Q+
d when d < 0. Let Q 7→ gQ be

the usual action of Γ that is compatible with linear fractional action on the roots of Q(τ, 1) = 0.
Explicitly,

(gQ)(x, y) = Q(δx− βy,−γx+ αy), where g = ±
(
α β
γ δ

)
∈ Γ.

As is well known, the resulting set of classes Γ\Qd is finite and those classes consisting of
primitive forms make up an abelian group under composition. Let ΓQ = {g ∈ Γ; gQ = Q} be the
group of automorphs of Q. If d < 0 then |ΓQ| = 1 unless Q ∼ a(x2 +y2) or Q ∼ a(x2 +xy+y2),
in which case |ΓQ| = 2 or 3, respectively. If d > 0 is not a square then ΓQ is infinite cyclic with
a distinguished generator denoted by g

Q
, which for primitive Q is given by

(3.1) g
Q

= ±
(
t+bu

2
cu

−au t−bu
2

)
where t, u are the smallest positive integral solutions of t2 − du2 = 4. If δ = gcd(a, b, c) then
g
Q

= g
Q/δ

.

Suppose that D is a fundamental discriminant, i.e. the discriminant of Q(
√
D), and that d

is a discriminant. For Q = [a, b, c] with discriminant dD let

(3.2) χ(Q) = χD(Q) =

{(
D
r

)
if (a, b, c,D) = 1 where Q represents r and (r,D) = 1,

0, if (a, b, c,D) > 1.

Here
( ·
·

)
is the Kronecker symbol. It is well-known that χ is well–defined on classes Γ\QdD,

that χ restricts to a real character (a genus character) on the group of primitive classes and
that all such characters arise this way. We have the identity

χD(−Q) = (sgnD)χD(Q).(3.3)

If d is also fundamental we have that χD = χd on Γ\QdD. A good reference for the basic theory
of these characters is [19, p. 508].
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A crucial ingredient in what follows is an identity connecting the weight 1/2 Kloosterman sum
with a certain exponential sum taken over solutions to a quadratic congruence, a quadratic Weyl
sum. In a special case this identity is due to Salié and variants have found many applications
in the theory of modular forms. We shall use a general version due essentially to Kohnen [32].
To define the weight 1/2 Kloosterman sum we need an explicit formula for the theta multiplier
in j(γ, τ), which was defined in (1.2). This may be found in [41, p. 447]. As usual, for non-zero
z ∈ C and v ∈ R we define zv = |z|v exp(iv arg z) with arg z ∈ (−π, π]. We have

j(γ, τ) = (cτ + a)1/2ε−1
a

(
c
a

)
for γ = ± ( ∗ ∗c a ) ∈ Γ0(4),

where
(
c
a

)
is the extended Kronecker symbol and

εa =

{
1 if a ≡ 1 (mod 4)

i if a ≡ 3 (mod 4).

For c ∈ Z+ with c ≡ 0 (mod 4) and m,n ∈ Z let

K1/2(m,n; c) =
∑

a(mod c)

(
c
a

)
εae
(
ma+na

c

)
be the weight 1/2 Kloosterman sum. Here ā ∈ Z satisfies

aā ≡ 1 (mod c).

It is convenient to define the modified Kloosterman sum

K+(m,n; c) = (1− i)K1/2(m,n; c)×

{
1 if c/4 is even

2 otherwise.

It is easily checked that

(3.4) K+(m,n; c) = K+(n,m; c) = K+(n,m; c).

The associated exponential sum is defined for d ≡ 0, 1 (mod 4) and fundamental D by

(3.5) Sm(d,D; c) =
∑

b(mod c)

b2≡Dd (mod c)

χ
(
[ c
4
, b, b

2−Dd
c

]
)
e
(

2mb
c

)
,

where χ was defined in (3.2). Clearly

S−m(d,D; c) = Sm(d,D; c) = Sm(d,D; c).

The following identity is proved by a slight modification of the proof given by Kohnen in [32,
Prop. 5, p. 259] (see also [9], [25] and [42]).

Proposition 3. For positive c ≡ 0 (mod 4), d,m ∈ Z with d ≡ 0, 1 (mod 4) and D a funda-
mental discriminant, we have

Sm(d,D; c) =
∑

n|(m, c4)

(
D
n

)√
n
c
K+

(
d, m

2D
n2 ; c

n

)
.

By Möbius inversion in two variables this can be written in the form

(3.6) c−1/2K+(d,m2D, c) =
∑

n|(m, c4)

µ(n)
(
D
n

)
Sm/n

(
d,D; c

n

)
.
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Note that this gives an identity for K+(d, d′, c) for any pair d, d′ ≡ 0, 1 (mod 4). An immediate
consequence of (3.6) and the obvious upper bound

Sm(d,D; c)�ε c
ε

is the upper bound

(3.7) K+(d, d′, c)�ε c
1/2+ε,

which holds for any ε > 0. Furthermore, since for any m,n ∈ Z we have

K1/2(m,n; c) = 1
4
K1/2(4m, 4n; 4c),

(3.7) implies that for any m,n ∈ Z

K1/2(m,n, c)�ε c
1/2+ε.

This elementary bound correspond to Weil’s bound for the ordinary (weight 0) Kloosterman
sum

K0(m,n; c) =
∑

a(mod c)

(a,c)=1

e
(
ma+nā

c

)
,

which states that (see [44], [21, Lemma 2])

(3.8) K0(m,n; c)�ε (m,n, c)1/2c1/2+ε.

4. Cycle integrals of Poincaré series

As further preparation for the proof of Theorem 3, in this section we will compute the cycle
integrals of certain general Poincaré series, which we will then specialize in order to treat jm.
To begin we need to make some elementary observations about cycle integrals. For Q ∈ Qd

with d > 0 not a square let SQ be the oriented semi-circle defined by

(4.1) a|τ |2 + bRe τ + c = 0,

directed counterclockwise if a > 0 and clockwise if a < 0. Clearly

(4.2) SgQ = gSQ,

for any g ∈ Γ. Given z ∈ SQ let CQ be the directed arc on SQ from z to g
Q
z, where g

Q

was defined in (3.1). It can easily be checked that CQ has the same orientation as SQ. It is
convenient to define

(4.3) dτQ =

√
d dτ

Q(τ, 1)
.

If τ ′ = gτ for some g ∈ Γ we have

(4.4) dτ ′gQ = dτQ.

For any Γ–invariant function f on H the integral
∫
CQ
f(τ)dτQ is both independent of z ∈ SQ

and is a class invariant. This is an immediate consequence of the following lemma that expresses
this cycle integral as a sum of integrals over arcs in a fixed fundamental domain for Γ. This
lemma will also be used in the proof of Theorem 5. Let F be the standard fundamental domain
for Γ

F = {τ ∈ H;−1
2
≤ Re τ ≤ 0, |τ | ≥ 1} ∪ {τ ∈ H; 0 < Re τ < 1

2
, |τ | > 1}.
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Lemma 6. Let Q ∈ Qd be a form with d > 0 not a square and F′ = gF be the image of F under
any fixed g ∈ Γ. Suppose that f is Γ-invariant and continuous on SQ. Then for any z ∈ SQ we
have ∫

CQ

f(τ)dτQ =
∑
q∈(Q)

∫
Sq∩F′

f(τ)dτq,(4.5)

where (Q) denotes the class of Q.

Proof. Let f̃(τ) = f(τ) if τ ∈ F′ and f̃(τ) = 0 otherwise, so f(τ) =
∑

g∈Γ f̃(gτ) with only a
discrete set of exceptions. Thus∫

CQ

f(τ)dτQ =

∫
CQ

∑
g∈Γ

f̃(gτ)dτQ =
∑

g∈Γ/ΓQ

∑
σ∈ΓQ

∫
CQ

f̃(gστ)dτQ =
∑

g∈Γ/ΓQ

∫
SQ

f̃(gτ)dτQ.

Take gτ as a new variable. By (4.2) and (4.4) we get∫
CQ

f(τ)dτQ =
∑

g∈Γ/ΓQ

∫
SgQ

f̃(τ)dτgQ,

which immediately yields (4.5). �

The general Poincaré series are built from a test function φ : R+ → C assumed to be smooth
and to satisfy φ(y) = Oε(y

1+ε), for any ε > 0. For any m ∈ Z let

(4.6) Gm(τ, φ) =
∑

g∈Γ∞\Γ

e (mRe gτ)φ(Im gτ).

This sum converges uniformly on compacta and defines a smooth Γ-invariant function on H.
We will express its cycle integrals in terms of the sum Sm(d,D; c) from (3.5). Define for t > 0
the integral transform.

Φm(t) =

∫ π

0

cos(2πmt cos θ)φ(t sin θ)
dθ

sin θ
.

For φ as above we see that this integral converges absolutely and that Φm(t) = Oε(t
1+ε). As we

have seen, we may assume without loss that d,D > 0.

Lemma 7. Suppose that d,D > 0 with dD not a square. Then for all m ∈ Z∑
Q∈Γ\QdD

χ(Q)

∫
CQ

Gm(τ, φ)dτQ =
∑

0<c≡0(4)

Sm(d,D; c)Φm

(
2
√
dD
c

)
.

Proof. For each Q, interchanging the sum defining Gm and the integral yields

(4.7)

∫
CQ

Gm(τ, φ)dτQ =
∑

g∈Γ∞\Γ

∫
CQ

e(mRe gτ)φ(Im gτ)dτQ.
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Now ΓQ, the group of automorphs of Q, acts freely on Γ∞\Γ so we have that∑
g∈Γ∞\Γ

∫
CQ

e(mRe gτ)φ(Im gτ)dτQ =

∑
g∈Γ∞\Γ/ΓQ

∑
σ∈ΓQ

∫
CQ

e(mRe gστ)φ(Im gστ)dτQ =

∑
g∈Γ∞\Γ/ΓQ

∫
SQ

e(mRe gτ)φ(Im gτ)dτQ.

Applying (4.4) and (4.2) in the last expression, we get from (4.7) that∫
CQ

Gm(τ, φ)dτQ =
∑

g∈Γ∞\Γ/ΓQ

∫
SgQ

e(mRe τ)φ(Im τ)dτgQ

and hence that∑
Q∈Γ\QdD

χ(Q)

∫
CQ

Gm(τ, φ)dτQ =
∑

Q∈Γ∞\QdD

χ(Q)

∫
SQ

e(mRe τ)φ(Im τ)dτQ.

We now need to parameterize the cycle explicitly. Let

(4.8) τQ =
−b
2a

+
i
√
d

2|a|
,

which is easily seen to be the apex of the circle SQ. We can parameterize SQ by θ ∈ (0, π) via

τ =

{
Re τQ + eiθ Im τQ if a > 0

Re τQ − e−iθ Im τQ if a < 0.

With this parameterization we find that

Q(τ, 1) =
d

4a
·

{
e2iθ − 1 if a > 0

e−2iθ − 1 if a < 0

and hence that dτQ = dθ/ sin θ. Since χ(Q) = χ(−Q) we arrive at the identity∑
Q∈Γ\QdD

χ(Q)

∫
CQ

Gm(τ, φ)dτQ = 2
∑

Q∈Γ∞\Q+
dD

χ(Q) e(mRe τQ)Φm(Im τQ).

The proof of Lemma 7 is thus reduced to the following lemma. �

Lemma 8. Let φ be as above and suppose that dD is not a square. Then for all m ∈ Z we
have the identity∑

Γ∞\Q+
dD

χ(Q) e(mRe τQ)φ(Im τQ) = 1
2

∑
0<c≡0(4)

Sm(d,D; c)φ
(

2
√
|dD|
c

)
,

where τQ is defined in (4.8).

Proof. Under the growth condition on φ both series are absolutely convergent, and can be
rearranged at will. Consider the left hand side. For g = ±( 1 k

0 1 ) ∈ Γ∞ and Q = [a, b, c] ∈ QdD,
gQ = [a, b− 2ka, ∗] and so the map

[a, b, c] 7→ (a, b mod 2a)
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is Γ∞-invariant. Thus∑
Γ∞\Q+

dD

χ(Q)e(mRe τQ)φ(Im τQ) =
∞∑
a=1

φ

(√
|dD|
2a

)∑
b (2a)

χ([a, b, b
2−dD

4a
]) e(−mb

2a
).

The sum in b is restricted to those values for which b2−dD
4a

is an integer. This happens exactly
when b2 ≡ dD (mod 4a). Thus the inner sum is∑

b (2a)
b2≡dD (4a)

χ([a, b, b
2−dD

4a
])e(−mb

2a
) = 1

2

∑
b (4a)

b2≡dD (4a)

χ([a, b, b
2−dD

4a
]) e(−2mb

4a
) = 1

2
Sm(d,D; 4a).

Replace 4a by c to finish the proof. �

We remark that the positive definite version of Lemma 7 is following well-known formula for
dD < 0:

(4.9)
∑

Q∈Γ\QdD

w−1
Q χ(Q)Gm(τ, φ) = 1

2

∑
0<c≡0(4)

Sm(d,D; c)φ
(

2
√
|dD|
c

)
.

This formula is an immediate consequence of Lemma 8.
Now we will specialize the Poincaré series Gm from (4.6) and construct the modular functions

jm. Let Gm(τ, s) = Gm(τ, φm,s), where

φm,s(y) =

{
ys if m = 0

2π|m| 12y 1
2 Is− 1

2
(2π|m|y) if m 6= 0,

with Is−1/2 the Bessel function as before. The resulting Γ-invariant function satisfies

40Gm(τ, s) = s(1− s)Gm(τ, s).

The function G0 is the usual Eisenstein series while Gm for m 6= 0 was studied by Neunhöffer
[36] and Niebur [37], among others. The required analytic properties of Gm(τ, s) in s are most
easily obtained from their Fourier expansions. For the Eisenstein series we have the well known
formulas (see e.g. [24])

G0(τ, s) = ys + c0(0, s)y1−s +
∑
n6=0

c0(n, s)Ks− 1
2
(2π|n|y)e(nx),

where Ks− 1
2

is the K-Bessel function (see e.g. [34]),

c0(0, s) =
ξ(2s− 1)

ξ(2s)
and for n 6= 0 c0(n, s) =

2y1/2

ξ(2s)
|n|s−1/2σ1−2s(|n|),

with ξ(s) = π−
s
2 Γ(s/2)ζ(s). For m 6= 0 the Fourier expansion of Gm can be found in [15], and

is given by

Gm(τ, s) = 2π|m|
1
2y

1
2 Is− 1

2
(2π|m|y)e(mx) + cm(0, s)y1−s

+4π|m|1/2y1/2
∑
n6=0

|n|1/2cm(n, s)Ks− 1
2
(2π|n|y)e(nx),

where

cm(0, s) =
4π|m|1−sσ2s−1(|m|)

(2s− 1)ξ(2s)
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and

cm(n; s) =
∑
c>0

c−1K0(m,n; c) ·

{
I2s−1(4π

√
|mn| c−1) if mn < 0

J2s−1(4π
√
|mn| c−1) if mn > 0.

Define for m ∈ Z+ and Re(s) > 1

(4.10) jm(τ, s) = G−m(τ, s)− 2m1−sσ2s−1(m)

π−(s+ 1
2

)Γ(s+ 1
2
)ζ(2s− 1)

G0(τ, s).

It follows from its Fourier expansion, Weil’s bound (3.8) and (2.17) that jm(τ, s) has an analytic
continuation to Re(s) > 3/4. Furthermore, since a bounded harmonic function is constant, for
m ∈ Z+ we have

(4.11) jm(τ, 1) = jm(τ),

where jm was defined above (1.5) (c.f. [37]). Alternatively, we could apply the theory of the
resolvent kernel in weight 0 to get the analytic continuation of jm(τ, s) up to Re s > 1/2.

In view of (4.11), in order to compute the traces of jm(τ, s) it is enough to compute them for
Gm(τ, s). We have the following identities, which are known when m = 0 (Dirichlet/Hecke) and
when dD < 0 (see e.g. [10], [9], [7]). For the convenience of the reader we will give a uniform
proof.

Proposition 4. Let Re(s) > 1 and m ∈ Z. Suppose that d and D are not both negative and
that dD is not a square. Then, when dD < 0 we have∑

Q∈Γ\QdD

χ(Q)

wQ
Gm(τQ, s) =


√

2π|m| 12 |dD|
1
4
∑

c≡0(4)
Sm(d,D;c)

c1/2
Is− 1

2

(
4π
√
m2|dD|
c

)
if m 6= 0

2s−1 |dD|
s
2
∑

c≡0(4)
S0(d,D;c)

cs
if m = 0,

while when dD > 0 we have

∑
Q∈Γ\QdD

χ(Q)

B(s)

∫
CQ

Gm(τ, s)dτQ =


√

2π|m| 12 |dD|
1
4
∑

c≡0(4)
Sm(d,D;c)

c1/2
Js− 1

2

(
4π
√
m2|dD|
c

)
if m 6= 0

2s−1 |dD|
s
2
∑

c≡0(4)
S0(d,D;c)

cs
if m = 0,

where B(s) = 2sΓ( s
2
)2/Γ(s).

Proof. By (4.9) the proof of Proposition 4 reduces to the case dD > 0. Applying Lemma 7
when m = 0 we use the well-known evaluation∫ π

0

(sin θ)s−1dθ = 2s−1 Γ( s
2
)2

Γ(s)
.

When m 6= 0 we need the following not-so-well-known evaluation to finish the proof. �

Lemma 9. For Re(s) > 0 we have∫ π

0

cos(t cos θ)Is− 1
2
(t sin θ)

dθ

(sin θ)1/2
= 2s−1 Γ( s

2
)2

Γ(s)
Js−1/2(t).

Proof. Denote the left hand side by Ls(t). We use the definition of Is− 1
2

in (2.17) to get

Ls(t) =
∞∑
k=0

(t/2)s+2k−1/2

k!Γ(s+ k + 1
2
)

∫ π

0

cos(t cos θ)(sin θ)s+2k−1dθ.

Lommel’s integral representation [43, p. 47 ] gives for Re v > −1/2 that

Jν(y) =
(y/2)ν

Γ(ν + 1
2
)Γ(1

2
)

∫ π

0

cos(y cos θ)(sin θ)2νdθ.
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Thus for Re(s) > 0 we have that

Ls(t) = Γ(1
2
)
∞∑
k=0

Γ( s
2

+ k)

k!Γ(s+ k + 1
2
)
(t/2)s/2+kJ(s−1)/2+k(t).

This Neumann series can be evaluated (see [43, p.143,eq.1]) giving for Re(s) > 0

Ls(t) =
Γ(1

2
)Γ( s

2
)

Γ( s
2

+ 1
2
)
Js−1/2(t).

The result follows by the duplication formula for Γ(s). �

5. The traces in terms of Fourier coefficients

In this section we complete the proofs of Theorems 3 and 4. We need to express the traces
of jm in terms of the Fourier coefficients of our basis hd. This is first done for jm(τ, s) with
Re(s) > 1 by applying Proposition 3 to transform the sum of exponential sums in Proposition
4 into a sum of Kloosterman sums, which is then related to the coefficients of hd(τ, s). The
method of using Kloosterman sums in this way was first applied by Zagier [46] to base change,
then by Kohnen [32] to the Shimura lift and more recently to weakly holomorphic forms in [4],
[9], [25] and [7].

Theorem 3 follows from Lemma 5, (4.11) and the next result by taking the limit as s→ 1+ of
both sides of (5.1). Also we use the relationship between a(n, d) and ad(n) given in and above
equation (2.15). We remark that we actually get a slightly more general result than Theorem
3 in that we may allow D < 0, but the general result is best left in terms of the coefficients
ad(n).

Proposition 5. Let m ∈ Z+ and Re(s) > 1. Suppose that d and D are not both negative and
that dD is not a square. Then

(5.1)
∑
n|m

(
D
n

)
ad
(
m2D
n2 ,

s
2

+ 1
4

)
=


∑

Q χ(Q)w−1
Q jm(τQ, s) if dD < 0,

B(s)−1
∑

Q χ(Q)
∫
CQ
jm(τ, s)dτQ if dD > 0,

where each sum on the right hand side is over Q ∈ Γ\QdD.

Proof. It is convenient to set for any m ∈ Z

Tm(s) =

{∑
Q χ(Q)w−1

Q Gm(τQ, s) if dD < 0,

B(s)−1
∑

Q χ(Q)
∫
CQ
Gm(τ, s)dτQ if dD > 0,

where each sum is over Q ∈ Γ\QdD. By Propositions 4 and 3 we have for m 6= 0 and Re(s) > 1
that

Tm(s) = π|2m|
1
2 |dD|

1
4

∑
n|m

(
D
n

)
n−

1
2

∑
c≡0(4)

c−1K+
(
d, m

2D
n2 ; c

)
·


Is− 1

2

(
4π
c

√
m2

n2 |Dd|
)

if dD < 0,

Js− 1
2

(
4π
c

√
m2

n2 |Dd|
)

if dD > 0,

while when m = 0 we have

T0(s) = 2s−1 |dD|
s
2 LD(s)

∑
c≡0(4)

c−s−1/2K+
(
d, 0; c

)
.
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Thus by (2.21) of Proposition 2 we derive that

(5.2) Tm(s) =


∑

n|m
(
D
n

)
bd
(
m2D
n2 ,

s
2

+ 1
4

)
, if m 6= 0

2s−1π−
s+1
2 |D|

s
2 LD(s)bd(0,

s
2

+ 1
4
) if m = 0.

In view of (4.10), in order to prove Proposition 5 it is enough to show that

(5.3)
∑
n|m

(
D
n

)
ad
(
m2D
n2 ,

s
2

+ 1
4

)
= Tm(s)− 2m1−sσ2s−1(m)

π−(s+ 1
2

)Γ(s+ 1
2
)ζ(2s− 1)

T0(s).

By (2.29) and the first formula of (5.2) the left hand side of (5.3) is

Tm(s)−
bd(0,

s
2

+ 1
4
)

b0(0, s
2

+ 1
4
)

∑
n|m

(
D
n

)
b0(m

2D
n2 ,

s
2

+ 1
4
).

Hence by the second formula of (5.2) we are reduced to showing that

b0(0, s
2

+ 1
4
)−1
∑
n|m

(
D
n

)
b0(m

2D
n2 ,

s
2

+ 1
4
) =

2sπs/2|D|s/2m1−sσ2s−1(m)LD(s)

Γ(s+ 1
2
)ζ(2s− 1)

,

which follows by Lemma 4. This finishes the proof of Proposition 5, hence of Theorem 3. �

We now give a quick proof of Theorem 4. By (2.26) we have

Ress= 3
4
P+

0 (τ, s) = 3
4π
θ(τ).

The function Ẑ+(τ) can now be defined through the limit formula5

(5.4) Ẑ+(τ) = 1
3

lim
s→ 3

4

(
P+

0 (τ, s)−
3

4π
θ(τ)

s− 3/4

)
.

It follows from (5.4) that Ẑ+(τ) has weight 1/2 and satisfies

(5.5) ∆1/2(Ẑ+) = − 1
8π
θ.

Finally, using (5.2) when m = 0 and the fact that G0(τ, s) has a simple pole at s = 1 with

residue 3/π, one shows that Ẑ+(τ) has a Fourier expansion of the form (1.19).

The statement that Ẑ+(τ) has generalized shadow Ẑ−(τ) from (1.18) can now be made precise
since it follows from (5.5) and the easily established identity

ξ3/2 Ẑ= − 1
4π
θ,

that

ξ1/2 Ẑ+ = −2Ẑ−.

5We remark that a similar limit formula was considered in [11].



CYCLE INTEGRALS OF THE J-FUNCTION 23

6. Rational period functions

We now prove Theorem 5. First we give a rough bound for the traces in terms of m when
d > 0 is not a square that is sufficient to show that Fd is holomorphic in H.

Proposition 6. For d > 0 not a square and m ∈ Z+ we have for all ε > 0 that

Trd(jm)�d,ε m
5/4+ε.

Proof. It follows from [22, Thm 1. p. 110] that for fixed d not a square and x > 0, we have for
all ε > 0 that

(6.1)
∑

0<n<x

Sm(d, 1; 4n)�d,ε (mx)ε(m5/4 + x3/4),

after replacing d by 4d if necessary. For 1 < s < 2 we have by (3) and the well-known bound
(see e.g. [34, pp. 122])

Jv(y)�ν y
−1/2

that ∑
0<n≤m

Sm(d, 1; 4n)
√

m
n
Js− 1

2

(
π
√
|d|m

n

)
�d,ε m

1+ε.

By (2.17) we have for x > m∑
m<n<x

Sm(d, 1; 4n)
√

m
n
Js− 1

2

(
π
√
|d|m

n

)
�d,ε m

s

∣∣∣∣∣ ∑
m<n<x

Sm(d, 1; 4n)n−s

∣∣∣∣∣+m1+ε.

Summation by parts and (6.1) give

ms
∑

m<n<x

Sm(d, 1; 4n)n−s �d,ε m
5/4+ε.

Now Proposition 6 follows by Proposition 4 and (4.10) by taking s → 1+ in the resulting
uniform inequality ∑

Q∈Γ\Qd

∫
CQ

jm(τ, s)dτQ �d,ε m
5/4+ε

and using (4.11). �

It follows from Theorem 3 and Proposition 6 that the function Fd defined in (1.20) for d > 0
not a square can be represented by the series

(6.2) Fd(τ) = −
∑
m≥0

Trd(jm) qm,

which gives a holomorphic function on H. The basis {jm}m≥0 has a generating function that
goes back to Faber (see e.g. [1]):

(6.3)
∑
m≥0

jm(z)qm =
j′(τ)

j(z)− j(τ)
, where j′(τ) =

1

2πi

d j

d τ
.

Note that this formal series converges when Im(τ) > Im(z) and that for fixed τ not a zero of
j′ it has a simple pole at z = τ with residue (2πi)−1. It follows from (6.3) and (6.2) that for
Im(τ) sufficiently large we have

(6.4) Fd(τ) =
1

2π

∑
Q∈Γ\Qd

∫
CQ

j′(τ)

j(τ)− j(z)

dτ

Q(τ, 1)
,
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where we take for CQ an arc on SQ, the semi-circle defined in (4.1). Let F′ = −F−1 be the
image of the standard fundamental domain under inversion τ 7→ −1/τ. By (6.4) and Lemma 6
applied to each class of Qd and to each fundamental domain F and F′, we can write

Fd(τ) =
1

4π

∑
Q∈Qd

(∫
SQ∩F

j′(τ)

j(τ)− j(z)

dτ

Q(τ, 1)
+

∫
SQ∩F′

j′(τ)

j(τ)− j(z)

dτ

Q(τ, 1)

)
.

Now it is easily seen that each of these integrals is invariant under Q 7→ −Q, so we may restrict
the sum to Q+

d , giving

(6.5) Fd(τ) =
1

2π

∑
Q∈Q+

d

(∫
SQ∩F

j′(τ)

j(τ)− j(z)

dτ

Q(τ, 1)
+

∫
SQ∩F′

j′(τ)

j(τ)− j(z)

dτ

Q(τ, 1)

)
.

Recall from [8] that an indefinite quadratic form Q = [a, b, c] is called simple if c < 0 < a.
It is easily seen that Q ∈ Qd is simple if and only if Q ∈ Q+

d and SQ intersects F′′ = F ∪ F′.
For simple Q let AQ = SQ ∩ F′′ be the arc in F′′ oriented from right to left. Clearly AQ must
connect the two “vertical” sides of F′′.6 Thus from (6.5) we obtain the identity

Fd(τ) =
1

2π

∑
Q simple

b2−4ac=d

∫
AQ

j′(τ)

j(τ)− j(z)

dz

Q(z, 1)
.

Now we deform each arc AQ in the sum of integrals to BQ, which is within F′′ and has the
same endpoints as AQ, but travels above τ . By evaluating each resulting residue at τ , we get
the formula

Fd(τ) =
1

2π

∑
Q simple

b2−4ac=d

∫
BQ

j′(τ)

j(τ)− j(z)

dz

Q(z, 1)
+

1

2π

∑
Q simple

b2−4ac=d

Q(τ, 1)−1,

which is also valid at −1/τ . A simple calculation now shows that (1.21) holds in a neighborhood
of τ , hence for all τ ∈ H. Thus Theorem 5 follows.

Finally, for fixed m ∈ Z+ the inequality (6.1) can be used to show that the series in Propo-
sition 4 converges when s = 1. They yield the formula (1.24) upon using the elementary
evaluation

J1/2(y) =
√

2
πy

sin y.

Appendix A. Whittaker functions

A standard reference for the theory of Whittaker functions is [45, Chap. 16]. Another good
reference is [35]. For the convenience of the reader we will record here some of the properties
of these special functions that we need.

For fixed µ, ν with Re(ν ± µ + 1/2) > 0 the Whittaker functions may be defined for y > 0
by [35, pp. 311, 313]

Mµ,ν(y) =yν+ 1
2 e

y
2

Γ(1+2ν)

Γ(ν+µ+ 1
2

)Γ(ν−µ+ 1
2

)

∫ 1

0

tν+µ− 1
2 (1− t)ν−µ−

1
2 e−yt dt and(A.1)

Wµ,ν(y) =yν+ 1
2 e

y
2 1

Γ(ν−µ+ 1
2

)

∫ ∞
1

tν+µ− 1
2 (t− 1)ν−µ−

1
2 e−yt dt.(A.2)

6For example, when d = 12 the simple forms are [1, 0,−3], [1,−2,−2], [1, 2,−2], [3, 0,−1], [2, 2,−1], [2,−2,−1].
A diagram showing the corresponding arcs AQ in this case is given in Figure 1.
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Both Mµ,ν(y) and Wµ,ν(y) satisfy the second order linear differential equation

(A.3)
d2w

dy2
+
(
− 1

4
+ µy−1 + (1

4
− ν2)y−2

)
w = 0.

Their asymptotic behavior as y → ∞ for fixed µ, ν is easily found from (A.1) and (A.2) by
changing variable t 7→ t/y:

Mµ,ν(y) ∼ Γ(1+2ν)

Γ(ν−µ+ 1
2

)
y−µey/2 and Wµ,ν(y) ∼ yµe−y/2.(A.4)

In particular, they are linearly independent. For small y we get directly from (A.1) that

Mµ,ν(y) = yν+ 1
2

(
1 + Oµ,ν(y)

)
.(A.5)

It is also apparent from (A.1) and (A.2) that when ν − µ = 1/2 we have

(A.6) Mµ,ν(y) + (2µ+ 1)Wµ,ν(y) = Γ(2µ+ 2)y−µey/2,

while when ν + µ = 1/2 we have from (A.2) that

(A.7) Wµ,ν(y) = yµe−y/2.

The I-Bessel and K-Bessel functions are special Whittaker functions [35]:

Iν(y) = 2−2ν− 1
2 Γ(ν + 1)−1y−

1
2M0,ν(2y) and Kν(y) =

√
π
2y
W0,ν(2y).

Their asymptotic properties for large y thus follow from (A.4).
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