
Complex or p-adic wave functions?

This has been an issue from the beginning. Mathematically
it is natural to work over the p-adic field. But as there are no
Hilbert spaces we have to work in the category of Banach
spaces over the field Qp. There is a beautiful theory of
representations over such and so there is no serious problem
understanding the role of the symmetry groups.

Already Heisenberg proposed the use of quasi Hilbert spaces
where the metric is not positive definite-some people call
them Pontryagin spaces-in quantum electrodynamics. So it
is not inconceivable that p-adic Banach spaces can play a
role in arithmetic variants of quantum theory.



Hamiltonians and Feynman-Kac formula

LetG be a locally compact abelian group and Ĝ its character
group. In applications it will be a vector space over a p-
adic division ring or the adelic version of a vector space
over a rational division ring. We have the Fourier transform
isomorphism

F : L2(G) ≃ L2(Ĝ)

For functions (suitably restricted) f on G, ĝ on Ĝ,

M(f) : ψ 7−→ fψ, (ψ ∈ L2(G)) M̂(ĝ) = F−1M(ĝ)F .

The M̂(ĝ) are the analogs of the pseudo differential opera-

tors . For G = RN ,

M̂(ĝ) = −∆ ĝ = ξ21 + ξ22 + . . .+ ξ2N .

We first consider the case where only space is non
archimedean. The model for space time is X = G×R. For a
quantum system with configuration space G, the M(f) are

the position and the M̂(ĝ) are the momentum operators.
The Hamiltonians are of the form

H = M̂(ĝ) +M(V )

Here M̂(ĝ) is the free Hamiltonian, V , the potential. If
V ≥ 0 H will be ≥ 0 ( modulo some technical issues).



Path integral formalism

In the late 1940’s R. Feynman, then a graduate student
in Princeton, created in his Ph. D thesis (under John
Archibald Wheeler) a new formalism for quantum mechan-
ics that is nowadays called the path integral formalism. As-
sume that we are studying a scalar particle moving in RN .
Given a Hamiltonian H the bilinear form (etHϕ, ψconj) is
a distribution on RN × RN written as a generalized kernel

Kt(x, y), called the propagator . Feynman exhibitedKt(x, y)
as an integral over the space of classical paths of the system
starting from x at time 0 and ending at y at time t with re-
spect to a (vaguley defined) measure, and showed that the
entire quantum theory can be built from this formula. In
spite of the difficulties in making it rigorous this method
has been profoundly influential. It has remarkable predic-
tive power that has made QFT a very powerful instrument
even in mathematics, at the hands of Witten (for one).

Mark Kac found a very beautiful variant of the Feynman
path integral for the propagator in which the vague Feynman
measure is replaced by Wiener measure, for a large class of
Hamiltonians. This formula is known as the Feynman-Kac

formula.



Kac on the F-K formula

. . . It must have been in the spring of 1947 that Feynman
gave a talk at the Cornell Physics Colloquium based on some
material from his 1942 Ph. D dissertation, which had not
yet been published.

. . . A fundamental concept of quantum mechanics is a quan-
tity called the propagator, and the standard way of finding
it (in the nonrelativistic case) is by solving the Schrödinger
equation. Feynman found another way based on what be-
came known as the Feynman path integral or “the sum over
histories”. During his lecture Feynman sketched the deriva-
tion of his formula and I was struck by the similarity of his
steps to those I had encountered in my work. In a few days
I had my version of the formula, although it took some time
to complete a rigorous proof. My formula connected solu-
tions of certain differential equations closely related to the
Schrödinger equation with Wiener integrals.

. . . It is only fair to say that I had Wiener’s shoulders to
stand on. Feynman, as in everything else he has done, stood
on his own, a trick of intellectual contortion that he alone is
capable of.

. . . I find Feynman’s formula to be very beautiful. It con-
nects the quantum mechanical propagator, which is a twenti-
eth century concept, with the classical mechanics of Newton
and Lagrange, in a uniquely compelling way.. . .

From his autobiography Enigmas of Chance.



The F-K formula for the propagator in RN

Kac’s big step was to observe that when the potential V is
≥ 0, the Hamiltonian H is ≥ 0, and so, by spectral theory,
e−zH makes sense for complex z with ℜ(z) ≥ 0. For z =
t real we get a very nice semigroup whose operators are
given by genuine integral operators. For their kernels Kac
obtained a formula as a Wiener integral. This transition
is then from real time (Feynman) to imaginary time (Kac).
The Schrödinger equation becomes the heat equation. The
free Hamiltonian is H0 = M̂

ĝ
which is −∆ in the standard

context. The free dynamics is given by e−tH0 . Since H0 =
∆, this is multiplication by e−tr2

in Fourier transform space
and so is convolution by a gaussian density gt. The gt are the
transition probabilities for the Wiener measure and we write
Pt,x,y for the conditional Wiener measure starting from x at
time 0 and ending at y at time t. Then

Kt(x, y) =

∫

C[0,t]N
e
−

∫
t

0

V (ω(s))ds
dPt,x,y.

The integration is over the Banach space of continuous func-
tions on [0, t] with values in RN .



Path integral in the general locally compact case

We assume that ĝ ≥ 0 and e−t̂g is positive definite in the

sense of Bochner for all t ≥ 0. Then e−t̂g is the Fourier

transform of a probability measure on pt on G and e
−tM̂

ĝ

is convolution by pt. The pt will gve rise to a stochastic
process with independent increments, and we write Pt,x,y for
the corresponding conditional probability measures. Then

Kt(x, y) =

∫
e
−

∫
t

0

V (ω(s))ds
dPt,x,y

exactly as before.

We can consider matrix potentials. The exponential in the
integrand should then be replaced by what are called the
time ordered exponentials .



p-adic and adelic cases

If G = Rd ≃ Ĝ, g(y) = |y|2, f = V (x) we get

H = −∆ + V

the classic form of the usual Hamiltonian. In the general
case where there may not be differential operators, the M̂g

are the pseudo differential operators. If

G = U ×R

U = a finite dimensional Banach space over Qp

we obtain a class of p-adic Hamiltonians

H = −∆α + V

if we take
g(y) = ||y||α, f = V

In the p-adic case the positive definiteness conditions can
be verified and so we obtain an analog of the Feynman-Kac
formula. The Wiener measure would be replaced by a G-
valued stochastic process with independent increments and
paths which have only discntinuities of the first kind. There
is no difficulty in principle in treating the adelic case. The
existence of the F-K formula implies the uniqueness of the
ground state if there is a ground state.



QFT

Quantum field theory was begun by Dirac in the 1920’s when
he worked out his radiation theory, which is the theory of the
interaction of the atom with the electromagnetic field. The
motivation for his work was the fact that quantum theory
does not explain the fact that the atom makes spontaneous
transitions between energy levels, and much less, that it
does not give the probabilities for such emission and abosrp-
tion(derived earlier by Einstein using statistical mecahnics)
as well as the Bohr formula (called the magic formula by
Weyl)

E′ − E = h̄ν.

Dirac realized that these are phenomena arising out of the
interaction of the atom with the electromagnetic field, and
treated the question by quantizing the electromagnetic field.
His theory, which was non relativistic, explained all of the
above features and also gave the first explanation of the
wave-particle duality. Then Heisenberg and Pauli started
the theory of general quantum fields with the additional
proviso that the theory be compatible with the theory of
relativity (special).



General quantized fields

In QFT the method of procedure was the same as in quan-
tum mechanics: promote the classical observables to opera-
tors satisfying suitable commutation rules and assume that
the Hilbert space becomes rigid with this kinematics, so that
the dynamical operators can then be introduced as functions
of the field operators. The classical field A(x) consisting of
scalar or vector valued functions on space time satisfying
the field equations (Maxwell, for one) now became operator
valued; one of the basic commutation rule was

[A(x), A(y)] = 0 ((x− y)2 < 0) (CR)

where u2 = (u0)2 − (u1)2 − (u2)2 − (u3)2, explained by the
fact that light signals from x will not reach y if (x−y)2 < 0,
so that the operators A(x) and A(y) will not interfere with
each other.

This procedure was refined to include unobserved classical
fields like the Dirac fields and the commutation rule became

[A(x), A(y)]+ = 0 ((x− y)2 < 0) (ACR)

where [·, ·]+ is the anticommutator .



Smeared fields

In the 1940’s Bohr-Rosenfeld made a systematic analysis of
the measurement process in quantum field theory and dis-
covered that the field strengths A(x) are not observable at
the quantum level because the measurement used macro-
scopic test bodies. They showed that only averages

∫

D

A(x)d4x

over small space time regions D can be observed, i.e., the
fields have to be smeared before they can be observed. Thus
one has a linear map

f 7−→ A(f)

from the space of test functions into the space of (un-
bounded) operators, the field map. In spite of this the for-
malism was developed as if the fields A(x) themselves made
sense, but ran into serious difficulties because of divergences
in the various formulae for energy etc. The technique of
renormalization was created to overcome these difficulties
and a very accurate theory of quantum electrodynamics was
created by Schwinger, Feynman, Tomanaga.



Constructive (Rigorous) QFT

In the 1950’s a number of people (Wightman notably, based
on the work of Schwinger) created the general principles of
QFT based on the following:

1. Field operators are defined for f in Schwartz space
satisying the smeared forms of (CR) and (ACR).

2. There is a unitary representation of the Poincaré group
in the Hilbert space H compatible with the field map

3. The specturm of the UR above is contained in the closed
forward light cone (positivity of energy)

4. There is a unique vacuum state and that the application
of the field operators on it generate a dense subspace of
H.

Such fields exist-certainly the free fields are known to be
of this type. But construction of such fields on spacetime
even for a limited class of interactions has proved elusive.
Glimm and Jaffe were successful in the case when space
time dimension was 2 and 3.



Analytic continuation of the vacuum expectation values

Schwinger pioneered the theory of the VEV (vacuum expec-

tation values),

(Ω, A(x1)A(x2) . . . A(xN )Ω) (Ω = vacuum state)

where the xi are points of space time, and noted that they
can be analytically continued to complex space time points,
hence ultimately into points with imaginary time. This
space is called Schwinger space time and the conditions
(CR) and (ACR) remarkably become simplified in the pro-
cess. Schwinger space time is nothing but the euclidean
space time which is a real form of complex space time.
(This is a deep generalization of the unitarian trick of Weyl.)
For (CR) the condition becomes total symmetry and so one
could speak of a probability measure on the space of fields
such that the VEV’s (after analytic continuation) are its
moments .



Remarks

Roughly speaking, even though the VEV’s are not functions,
the positivity of the spectrum makes the VEV distributions

(Ω, A(f1)A(f2) . . . A(fN )Ω)

the boundary values of analytic functions existing in com-
plex space time; the Lorentz invariance now becomes in-
variance with respect to the complex Lorentz group and so
the VEV’s extend to a huge domain, driven by analytic-
ity and invariance; and this extended domain contains the
Schwinger space time). This is very analogous to the ana-
lytic continuation from the Feynman to the Feynman-Kac
formula discussed earlier.



Probability measures on spaces of tempered distributions

In the case of the F-K formula the probability measure is
the Wiener measure or some other auxiliary measures, and
these are defined on the space of paths. But in the case
of higher space time dimension the measures or not defined
on the space of fields. They are very singular and they are
only defined on the space of tempered distributions on the
Euclidean space time.

If this measure is given and satisfies an additional symme-
try, the VEV’s can be analytically continued backwards into
Minkowski space time.

If the measure is gaussian the QFT it generates on
Minkowski space time is free. To get QFT’s with a non
trivial scattering matrix the measure has to be non gaus-
sian.

A. N. Kochubei and M. R. Sait-Ametov have extended meth-
ods of euclidean quantum field theory to the p-adic case and
constructed non gaussian measures corresponding to suit-
able polynomial interactions. The measures correspond to
cut offs, and in some cases the cut off can be removed. These
results represent a beginning of p-adic QFT.


