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The Dirac Mode

“The steady progress of physics requires for its theo-
retical formulation a mathematics that gets continu-
ally more advanced. This is only natural and to be
expected. . . Non-euclidean geometry and noncommu-
tative algebra, which were at one time considered to
be purely fictions of the mind and pastimes for logical
thinkers, have now been found to be very necessary for
the description of general facts of the physical world. It
seems likely that this process of increasing abstraction
will continue in the future and that advance in physics
is to be associated with a continual modification and
generalisation of the axioms at the base of the math-
ematics rather than with a logical development of any
one mathematical scheme on a fixed foundation.

The theoretical worker in the future will therefore have
to proceed in a more indirect way. The most powerful
method of advance that can be suggested at present
is to employ all the resources of pure mathematics in
attempts to perfect and generalise the mathematical
formalism that forms the existing basis of theoretical
physics, and after each success in this direction, to try
to interpret the new mathematical features in terms of
physical entities. . .”



Remarks

These remarks were made by Dirac in the beginning of his
famous paper in which he created the theory of magnetic
monopoles.

P. A. M. Dirac, Quantized singularities in the electro-

magnetic field, Proc. Roy. Soc. Lond., A133 (1931),
60–72,

Monopoes have not been found to this day but they occur
all the time in string theory. Also, to this day, the only proof
that electric charge is quantized, i.e., it is always an integral
mulitple of a basic charge, remains that of Dirac, who gave
it in the above mentioned paper on monopoles, using the
existence of monopoles.

Since then people (Schwinger, Schwanziger) have considered
particles with both electric and magnetic charges. The Dirac
quantization condition now becomes completely arithmetic.
It asserts that the symmetry groups of such particles at the
quantum level are the groups Sp(2n,Z). The theory of mod-
ular forms thus becomes very important in these theories.



Some comments on the Dirac mode

The Dirac mode is to invent, so to speak, a new math-
ematical concept or framework first, and then try to
find its relevance in the real world, with the expectation
that (in a distorted paraphrasing of Dirac) a mathemat-
ically beautiful idea must have been adopted by God.
Of course the question of what constitutes a beautiful
and relevant idea is where physics begins to become an
art.

I think this second mode is unique to physics among the
natural sciences, being most akin to the mode practiced
by the mathematicians. Particle physics, in particular,
has thrived on the interplay of these two modes. Among
examples of this second approach, one may cite such
concepts as

Magnetic monopole

Non-Abelian gauge theory

Supersymmetry

On rare occasions, these two modes can become one
and the same, as in the cases of Einstein gravity and
the Dirac equation. . .

Y. Nambu, Broken Symmetry: Selected Papers of Y.

Nambu, 1995, World Scientific, pp. 383–389, eds. T.
Eguchi and K. Nishijima.



The p-adic world

valuations

(i) |ab|∞ = |a|∞|b|∞

(ii) |a+ b|∞ ≤ |a|∞ + |b|∞.

p-adic absolute value

|x|p = p−v if x = pv a
′

b′
where a′, b′ ∈ Z, (a′, b′) = 1.

properties

(a) |a+ b|p ≤ max(|a|p, |b|p) ( ultrametric inequality)

(b) locally compact, totally disconnected, non archimedean

(c) No other valuations on Q other than | · |p, | · |∞ (Os-
trowski’s theorem)

product formula
∏

v

|x|v = 1 (x ∈ Q) (v runs through primes p and ∞).

Theorem. There are no other locally compact non discrete

fields densely containing Q other than R and the Qp.



Fourier Transform

Haar measure

d(ax) = |a|vdx (v = p, v = ∞)

Fourier transforms of test functions

ψ : Qv −→ T a non trivial additive character of Qv

For f any test function on Qv,

f̂(y) =

∫

Qv

f(x)ψ(xy)dx, f(x) =

∫

Qv

f̂(y)ψ(−xy)dy

(For v = ∞ we take the test functions from the
Schwartz space. For v = p we take them to be elements
of the Schwartz-Bruhat space, namely, functions which
are locally constant and compactly supported. They
are thus functions on Ba/Bb where 0 < a < b < ∞,
Br is the p-adic ball of radius r. The integrals are thus
sums, and are generalizations of Gauss sums. Thus the
p-adic Fourier transform is arithmetic. The theory is
independent of the choice of ψ and one usually makes
certain normalized choices. For R we take ψ(x) = eix

or e2πix, depending upon whether one is an analyst or
a number theorist!)



Rational structures viewed in the various p-adic worlds

Quaternion algebras

For F a field and a, b ∈ F×, (a, b)F is the algebra with
generators i, j and relations

i2 = a, j2 = b, ij = −ji(= k) (∗).

(a, b)F = F ⊗ (a, b)Q (a, b ∈ Q ⊂ F )

One can view (a, b)Q (a, b ∈ Q×) in the various Qv. We
define

(a, b)v =

{
+1 if (a, b)Qv

splits
−1 if (a, b)Qp

≃ Hv.

Here splits refers to the fact that it is isomorphic to the full
2×2 matrix algebra, and Hv refers to the unique quaternion
division algebra over Qv. We then have

∏

v

(a, b)v = 1.



Remarks

1. We can even say more: if we are given numbers εv =
±1 for all v, we can find a rational quaternion algebra
(a, b)Q such that (a, b)v = εv for all v if and only if

∏

v

εv = 1.

This is the same as saying that the number of v-adic
worlds in which the algebra remains a division algebra
should be even, and that these can be specified arbi-
trarily. Moreover, once these places are specified, the
algebra is determined up to isomorphism. The most
remarkable thing about these results is that in essence
they go back to Gauss and his law of quadratic reci-
procity; however they were cast in this form by Hilbert.
The symbol

(a, b)p

is called the Hilbert symbol , a deep generalization of the
Legendre symbol. If we try to extend these results from
quaternion algebras to arbitrary division algebras with
center Q, we get into some of the most beautiful parts
of the number theory, in which the results of Artin and
Hasse dominate.

2. If we replace the fields Qv by much bigger ones, like
function fields in several variables, it is an entirely new
world of results. Murray Schacher and his collaborators
have studied many of these.



Rational algebraic groups

If we take a group like GL(n) or more generally, an algebraic
group G defined over Q (think SL(n), SO(n), Sp(n)), we get
the locally compact groups G(Qv) which can be studied in
greta depth. These are examples of v-adic Lie groups:

(a) As topological spaces they are manifolds, i.e., look lo-
cally like Qn

v

(b) The group maps (multiplication and inversion) are mor-
phisms

The structure of the p-adic Lie groups was studied many
years ago by Lazard who proved a version of Hilbert’s fifth
problem for these. The complex representation theory of
these groups has been intensively studied in recent years,
starting with Mautner, Gel’fand-Graev, Bruhat, Harish-
Chandra, and then by Langlands and others motivated by
arithmetic. The representation theory of p-adic groups over
p-adic fields is the theme of the lectures of Peter Schneider.

Originally the motivations for studying groups over p-adic
fields were somewhat vague. But they became crystal clear
when Langlands discovered that they encode in some way
the theory of extensions of the given p-adic field, more pre-
cisely, the representation theory of the Galois groups of these
extensions.



The adelic method

Rational adeles

An adele over Q is a vector

a = (a∞, a2, a3, a5, . . . , ap, . . .)

where

a∞ ∈ R, ap ∈ Qp, ap ∈ Zp for almost all p.

Basic facts:

(a) A is a locally compact ring

(b) Q is discrete in AandA/Q is compact

The group A/Q is thus a fundamental object associated to
the rational field.

Artin/Tate: Harmonic analysis on A/Q has deep arith-
metic significance.

One can apply this process of thinking to groups such as
GL(n) and rational algebraic groups G. To any such alge-
braic group we have the pair G(A), G(Q) where G(Q) is
discrete. We thus have the homogeneous space G(A)/G(Q)
which is locally compact and has a G(A)-action.

Langlands: Harmonic analysis on GL(n,A)/GL(n,Q) en-
codes information about the representation theory of the
Galois groups of extensions of Q.



Remarks

When v = ∞ we have a differential geometric object while
for v = p we get an arithmetic and combinatorial object. If
G = GL(n) where n > 1, the space GL(n,A)/GL(n,Q) is
no longer a group.

Let G = SL(2) and take a rational volume form on it using
which we compute volumes not only in the real but in all
p-adic worlds. In the real case we compute the volume of
the usual space

µ∞ = SO(2)\SL(2,R)/SL(2,Z)

while in the p-adic worlds we compute the volumes of the
compact groups

µp = SL(2,Zp).

It turns out (this is a non trivial computation) that

∏

v

µv = 1.

More precisely, we find that

µ∞ =
π2

6
, µp = (1 − p−2)(Euler!!)

For G = SL(n) the volume at ∞ is ζ(2)ζ(3) . . . ζ(n).



A general principle

This formula illustrates a general principle: what we are
really interested is in computing the volume of the object
defined over R; the product formula allows us to compute
it equally well if we live in the various p-adic worlds. The
basic result is that the adelic volume is 1 which allows us
to compute the real volume by arithmetic means. Such an
adelic volume can be computed for any semisimple algebraic
group defined over Q; it is then known as the Tamagawa

number. The finiteness of the volumes, which was an open
question for a number of years, was first proved by Borel and
Harish-Chandra in a famous paper in the late 1950’s. The
computation of the Tamagawa number for the orthogonal
groups is a deep way to encode the discoveries of C. L. Siegel
on the number of representations of one quadratic form by
another.

These methods work with equal facility whether the ground
field is Q or any algebraic number field (or even function
field). This is an illustration of their versatility.



Arithmetic structure of the (quantum) world

Manin (1989)

The world is really adelic. For various reasons, some of

which are certainly due to the fact that we (our measur-

ing apparatuses) are built of massive particles, we can

see only the real side of this world. However the arith-

metic side of the world has equal validity, and we should

be able to compute everything of importance from the

arithmetic side. The two pictures cannot coexist, and

this is something like the uncertainty principle. . .

Volovich (1987)

Spacetime is non archimedean in the Planck scale be-

cause no measurements are possible, and a clue to the

structure of the physical world at the Planck scale re-

quires us to understand how the world will behave if we

make this non archimedean hypothesis. . .



Remarks

The most accurate physical theory at present is quantum
electrodynamics which deals with the interaction of elec-
trons and positrons (matter) with the electromagnetic field
(radiation). This was completed in the early 1950’s. Since
then the physicists have worked out what is called the stan-

dard model which allows a unified treatment of electrody-
namics with the weak and strong forces. What has not
been done is the unification of this with gravity. In at-
tempting to build such unified theories people have encoun-
tered deep mathematical and physical obstacles connected
with the structure of space time at very short distances and
times. There is a fundamental scale called the Planck scale,
in which it appears certain that no measurements as we
can make today can be carried out. The idea of extended

particles (strings, branes) were born in this context. The
combination of the hypotheses of Manin and Volovich re-
quire us to examine from the mathematical point of view
the structures that arise in the description of the quantum
world, for instance, in the theory of elementary particles and
their fields, in their real as well as the p-adic incarnations,
and hence over the adeles as well.



Ingredients for a quantum theory

• Space time X

• A Hilbert space of states H

• Various bundles corresponding to various particles
(Dirac, Weyl, etc)

• The symmetry group G (Poincaré, conformal, etc) of X
and the bundles

• A unitary representation of G or Lie(G) in H

• Special operators and states in H corresponding to sec-
tions of the bundles.



Remarks

In non relativistic quantum mechanics X = RN × R,
G is the Galilean group, and we have the operators for po-
sition and momenta, and energy. In relativistic quantum
mechanics (single particles) we have X = R4 as Minkowski
space, G is the Poincaré group, and the energy operator.
In QFT we have the operators like creation and annihila-
tion, the vacuum state, and the field operators (smeared).
If space time is super symmetric, i.e., if there are additional
grassman coordinates in addition to the usual ones, G then
has to be super symmetric, and the unitary representation
of G will have to be super symmetric also. The arithmetic
hypotheses then suggest that it is of interest to examine the
nature of the structures described by the requirements above
when we work over the fields Qp and more generally over
the adele rings A. One can do this as we explained above
in two levels: over a fixed Qp (local), or over A (global); to
do the latter it is clear that X and G must be rational.

In this generality the problems that arise are nowhere near
any solution of reasonable generality. Already over R, QFT
has been rigorously constructed only for space time dimen-
sions 2 and 3, and that too for a very limited class of in-
teractions. The situation over p-adics is even worse: only
theories with a cut off have been constructed in a few cases,
and the cut off has not been removed. Not even this has
been done at the adelic level.


