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Abstract

It is remarkable that Euler, who preceded Gauss and Rie-
mann, is still very much with us. The ramifications of his
work are still not exhausted, three hundred years after his
birth. In number theory, in algebraic geometry, in topology,
in the calculus of variations, and in analysis, both concep-
tual and numerical, not to mention mechanics of particles
and solid bodies, astronomy, hydrodynamics, and other ap-
plied areas, the ideas that he generated are still motivating
mathematicians. In this talk, which will require no special-
ized background, I shall focus on two aspects of his work in
analysis–the zeta values, and the theory of summability of
divergent series, where he obtained formulae of surpassing
beauty, and pointed the way to future work that has proved
to be among the most fecund in the history of mathematics.



Topics

• General remarks

• Sum of even powers of reciprocals of integers

• Euler sums, Dirichlet series, and cyclotomy

• Multizeta values

• What is the sum of a divergent series?

• Epilogue



Timeline

1707 Born in Basel, Switzerland, April 15.

1725 Peter the Great and his widow Catherine establish the St.

Petersburg Academy of Sciences in St. Petersburg, Russia.

1727 Euler moves to St. Petersburg and becomes an adjunct in

mathematics.

1733 Euler takes over the chair in mathematics after Daniel

Bernoulli returns to Basel. Gets married and buys a house.

1735 Solves the problem of finding the sum of
∑

n≥1
1

n2 and

acquires an international reputation.

1738 Euler loses the vision in his right eye after a serious illness.

1741 Political turmoil in Russia after death of the czarina and

the regency. Euler leaves Russia to join the Academy of

Sciences in Berlin, Prussia.

1762 Catherine (the Great) II becomes the czarina in Russia and

starts the efforts to get Euler back.

1766 Euler returns to St. Petersburg. His eyesight begins to

deteriorate.

1771 Euler loses the vision in his left eye also.

1783 Dies in St. Petersburg on September 18, 1783.



Prolific and universal

• TENS OF THOUSANDS OF PAGES OF RE-
SEARCH ARTICLES AND TREATISES

• THE FIRST GREAT TREATISES IN ALGEBRA
AND ANALYSIS

• UNIVERSALITY

• Number Theory

• Elliptic integrals

• Calculus of Variations

• Analysis

• Mechanics, Astronomy, and Hydrodynamics

• SUNNY TEMPERAMENT

• MAJOR RESULTS IN ALMOST ALL BRANCHES
OF PURE AND APPLIED MATHEMATICS

• LOSS OF EYESIGHT, TOTAL TOWARDS THE
END (“LESS OF A DISTRACTION”)



Leonhardi Euleri Opera Omnia

• FOUR SERIES WITH SERIES I DEVOTED TO
PURE MATHEMATICS

• SEVERAL TREATISES: ALGEBRA, ANALYSIS,
LETTERS TO A GERMAN PRINCESS

• TOTAL NUMBER OF PAGES: 31,529+

• CORRESPONDENCE: 2,498 PAGES+

• UNPUBLISHED MANUSCRIPTS, DIARIES, ETC



Closer look

• I. Series prima: Opera Mathematica (29 vols), 14042
pages

• II. Series secunda: Opera mechanica et astronomica
(30 vols), 10658 pages

• III. Series tertia: Opera Physica, Miscellena (12 vols),
4331 pages

• IV A. Series quarta A: Commercium Epistolicum (7
vols, 1 in preparation), 2498 pages

• IV B. Series quarta B: Manuscripta (unpublished
manuscripts, notes, diaries, etc)



Internet Sources

There is a monumental project at Dartmouth to bring
the entire Opera Omnia into the net for universal accessi-
bility. The URL for this is

http://www.math.dartmouth.edu/∼euler/index.html



A letter to Lagrange

I have had all your calculations read to me, concerning the equation

101 = p2 − 13q2, and I am fully persuaded of their validity; but

as I am unable to read or write, I must confess that my imagination

could not follow the reasons for all the steps you have had to take, nor

keep in mind the meaning of all your symbols. It is true that such

investigations have formerly been a delight to me and that I have

spent much time on them; but now I can only undertake what I can

carry out in my head, and often I have to depend on some friend to

do the calculations which I have planned. . .

from Andre Weil’s translation



What is the value of 1 + 1
22 + 1

32 + . . .?

This question occupied a number of major mathematicians
like John Bernoulli and came to be known as the Basel

problem. Since the error committed by stopping after n
terms lies between 1/n and 1/(n + 1), a million terms have
to be added to get the value accurate to 6 decimals.

Euler first found a transformation of the series that allowed
him to calculate it with accuracy up to 6 decimals. Then in
1735 he found the exact value. The first proof was open to
many objections, but knowing he was right, he persevered
till he got a proof after 10 years that would satisy the most
exacting of his critics.



The story

• DILOGARITHM AND ζ(2) = 1.644944 . . .

• A RECKLESS APPLICATION OF NEWTON’S
THEOREM:

ζ(2) = π2/6, ζ(4) =
π4

90

• OBJECTIONS

• TRIUMPH: INFINITE PRODUCT FOR SINE



Dilog and ζ(2)

• DEFINITION:

Li2(x) =

∫ x

0

− log(1 − t)

t
dt =

∫

x>t1>t2>0

dt1dt2
t1(1 − t2)

• SERIES:

Li2(x) =
∑

n

xn

n2
, Li2(1) = ζ(2).

• FUNCTIONAL EQUATION:

Li2(x) + Li2(1 − x) = − log x log(1 − x) + Li2(1)

• EULER’S FORMULA:

ζ(2) = (log 2)2 + 2

∞
∑

n=1

1

n2.2n

log 2 = − log
1

2
=

∞
∑

n=1

1

n.2n
.

• The geometric nature of the terms allows an accurate computa-

tion of the series from a small number of terms.

ζ(2) = 1.644934 . . . .



Proof of functional equation

Start with

ζ(2) =

∫ 1

0

− log(1 − x)

x
dx.

We split the integration from 0 to u and u to 1. In the
second integral we change x to 1 − x to get

ζ(2) =

∫ u

0

− log(1 − x)

x
dx +

∫ 1−u

0

− log x

1 − x
dx = I1 + I2.

To evaluate I2 we integrate by parts first to get

I2 = log x log(1 − x)
∣

∣

1−u

0
+

∫ 1−u

0

− log(1 − x)

x
dx

Since log x log(1 − x) ∼ −x log x → 0 as x → 0,

ζ(2) = log u log(1 − u) +

∞
∑

n=1

un

n2
+

∞
∑

n=1

(1 − u)n

n2
.

Li2(u) + Li2(1 − u) = − log u log(1 − u) + Li2(1)



Evaluation

• “So much work has been done on the series ζ(n) that it seems

hardly likely that anything new about them may still turn up. . .
I, too, in spite of repeated efforts, could achieve nothing more

than approximate values for their sums. . . Now, however, quite

unexpectedly, I have found an elegant formula for ζ(2), depend-

ing on the quadrature of a circle [i.e., upon π] ”.

from Andre Weil’s translation

• In a letter to Daniel Bernoulli he communicated his formulae

1 +
1

22
+

1

32
+ . . . =

π2

6

1 +
1

24
+

1

34
+ . . . =

π4

90

• He calculated (laboriously, as he admitted himself), the values

of

1 +
1

2k
+

1

3k
+ . . .

for quite a few even values of k, certainly up to k = 12, often

using his summation formula.



Newton’s theorem applied to power series

• From Newton

1 − αs + βs2 − . . . ± ρsk =
(

1 − s

a

)(

1 − s

b

)

. . .
(

1 − s

r

)

1

a
+

1

b
+ . . . +

1

r
= α,

1

a2
+

1

b2
+ . . . +

1

r2
= α2 − 2β

1 − sin s = 1 − s +
s3

6
− s5

120
+ . . .

which vanishes doubly at

π

2
,−3π

2
,
5π

2
, . . .

we get (with α = 1, β = 0 etc)

π

4
= 1 − 1

3
+

1

5
− 1

7
+ . . . (LEIBNIZ)

π2

8
= 1 +

1

32
+

1

52
+ . . . = (1 − 2−2)ζ(2)

1 +
1

22
+

1

32
+ . . . =

π2

6



Objections

• ARE THERE COMPLEX ROOTS OF 1 − sin s?

• SINCE es(1− sin s) HAS THE SAME ROOTS, WHY
COULD NOT ONE WORK WITH IT?

• NEWTON FOR POWER SERIES OK?

• (POST RIEMANN) THE LEIBNIZ SERIES CON-
VERGES ONLY CONDITIONALLY



Infinite product for the sine

Euler himself was aware of the shortcomings of his proof.
It took him close to ten years before he was able to get a
proof that satisfied everybody, even us.

• INFINITE PRODUCT FOR SINE

sin z

z
=

∞
∏

n=1

(

1 − z2

n2π2

)

• METHOD OF PROOF

qn(z) := lim
n→∞

(

1 + iz
n

)n −
(

1 − iz
n

)n

2iz

qn(z) =

p
∏

k=1

(

1 − z2

n2

1 + cos 2kπ
n

1 − cos 2kπ
n

)

(n = 2p + 1)

sin z

z
= lim

n→∞
qn(z) =

∞
∏

n=1

(

1 − z2

n2π2

)



Remarks

• Nowadays it has become customary to establish this and the

product formula for cosine by complex analysis, with the par-

tial fraction for the cotangent as the starting point, and using

periodicity and Liouville’s theorem. Euler’s proof is elementary,

beautiful, and direct, and needs only the use of uniform conver-

gence to justify the last step, an elementary application of the

so-called M -test of Weierstrass.

• The partial fraction for the cotangent follows by logarithmic

differentiation of the product for sine, as observed by Daniel

Bernoulli.

• The product is absolutely convergent and so extending Newton

becomes trivial.

• There are no complex roots for the sine.



The sums 1 + 1
22k + 1

32k + . . .

• THE OCCURRENCE OF BERNOULLI NUMBERS

The value

ζ(12) =
691

6825 × 93555
π12

must have suggested to him that the Bernoulli numbers

are lurking around the evaluation of ζ(2k).

• LOGARITHMIC DIFFERENTIATION OF THE
PRODUCT FOR SINE AND PARTIAL FRACTION
FOR COTANGENT

π cotπs − 1

s
=

∞
∑

n=1

(

1

n + s
− 1

n − s

)

• REPEATED DIFFERENTIATION GIVES

ζ(2k) =
(−1)k−122k−1B2k

(2k)!
π2k



Concluding remarks

Here is an alternative proof for evaluating ζ(2) given
by Euler a few years afterwards. The method does not
extend to ζ(4) etc, in spite of efforts by Euler.

Start with

arcsinx =

∫ x

0

dt√
1 − t2

to get first

arcsinx = x +
∑

k≥1

1.3. . . . .2k − 1

2.4. . . . 2k
x2k+1.

Then use integration by parts to get

1

2
(arcsinx)2 =

∫ x

0

arcsin t√
1 − t2

dt

Replace arcsin t in the integrand by its power series and
integrate term by term from 0 to 1. We get

π2

8
= 1 +

1

32
+ . . . +

1

(2k + 1)2
+ . . .



Euler sums and cyclotomic numbers

• Euler evaluated a number of sums of the form

∑

n∈Z

h(n)

nr

where h(n) is a function periodic with a small period, espe-

cially a character mod N for some small N . As examples one

can mention

2π

3
√

3
=

∞
∑

n=1

(−1)n−1χ(n)

n
,

π

3
√

3
=

∞
∑

n=1

χ(n)

n

where

χ(n) =

{

+1 if n ≡ 1 mod 3

−1 if n ≡ −1 mod 3

0 otherwise

• The general sum is gπr where g is a cyclotomic number. Such

sums finally came into their own in Dirichlet’s work on L-

functions and his interpretation of some of them as class num-

bers.



Multi zeta values

Thirty years after his discovery of the zeta values Euler
wrote a paper where he introduced the double zeta values
(with a minor variant here)

ζ(a, b) = 1 +
1

2a
+

1

3a

(

1 +
1

2b

)

+
1

4a

(

1 +
1

2b
+

1

3b

)

+ . . .

These can be generalized to the so-called multi zeta values :

ζ(s1, s2, . . . , sr) =
∑

n1>n2>...>nr>0

1

ns1

1 ns2

2 . . . nsr

r

He obtained relations like

• ζ(2, 1) = ζ(3)

• 2ζ(λ − 1, 1) = (λ − 1)ζ(λ) −
∑

2≤q≤λ−2 ζ(λ − q)ζ(q)

• Recently there has been great interest in these numbers
and the relations between them.



Summing divergent series

• HOW CAN ONE ASSIGN A VALUE FOR A DI-
VERGING SERIES?

• EULER AND ABEL SUMMABILITY

• THE SUMMATION OF THE FACTORIAL SERIES

1 − 1! + 2! − 3! + 4! − 5! + . . . . . . = 0.596347362123 . . .

• BOREL SUMMABILITY

• FOURIER SERIES FOR δ(x)

∞
∑

n=−∞

e2inπx = 0 (0 < x < 2π)

• FUNCTIONAL EQUATION FOR ZETA AND SOME
L-SERIES



Euler on summing divergent series

In De seriebus divergentibus , communicated in 1755 and
published in 1760, Euler says:

Notable enough, however, are the controversies over the series 1-1+1-

1+1-1+. . . whose sum was given by Leibniz as 1/2, although others

disagree. No one has yet assigned another value to that sum, and so

the controversy turns on the question whether the series of this type

have a certain sum. Understanding of this question is to be sought

in the word “sum”; this idea, if thus conceived–namely the sum of a

series is said to be that quantity to which it is brought closer as more

terms of the series are taken–has relevance only for convergent series,

and we should in general give up this idea of sum for divergent series.

Wherefore, those who thus define a sum cannot be blamed if they

claim they are unable to assign a sum to a series. On the other hand,

as series in analysis arise from the expansion of fractions or irrational

quantities or even transcendentals, it will in turn be permissible in

calculation to substitute in place of such a series that quantity out of

whose development it is produced. For this reason, if we employ this

definition of sum, that is to say, the sum of a series is that quantity

which generates the series, all doubts with respect to divergent series

vanish and no further controversy remains on this score, in as much as

this definition is applicable equally to convergent or divergent series.



Accordingly, Leibniz, without any hesitation, accepted for the series

1-1+1-1+1-1+. . ., the sum 1/2, which arises out of the expansion of

the fraction 1/1+1, and for the series 1-2+3-4+5-6+. . ., the sum 1/4,

which arises out of the expansion of the formula 1/(1+1)2. In a simi-

lar way a decision for all divergent series will be reached, where always

a closed formula from whose expansion the series arises should be in-

vestigated. However, it can happen very often that this formula itself

is difficult to find, as here where the author treats an exceptional

example, that divergent series par excellence 1-1+2-6+24-120+720-

5040+. . ., which is Wallis’ hypergeometric series, set out with alter-

nating signs; this series, in whatever formula it finds its origin and

however much this formula is valid, is seen to be determinable by only

the deepest study of higher Analysis. Finally, after various attempts,

the author by a wholly singular method using continued fractions

found that the sum of this series is about 0.596347362123, and in this

decimal fraction the error does not affect even the last digit. Then

he proceeds to other similar series of wider application and he ex-

plains how to assign them a sum in the same way, where the word

“sum” has that meaning which he has here established and by which

all controversies are cut off.

from the translation by E. J. Barbeau and P. J. Leah



Actually Euler had discussed his ideas about divergent se-
ries much earlier, in correspondence with Goldbach and
Nicolaus Bernoulli I. In a letter to Goldbach written on
August 7, 1745, discussing his attempts to sum the diver-
gent series

1 − 1! + 2! − 3! + . . .

Euler has this to say (free translation from German):

. . . I believe that every series should be assigned a certain value.

However, to account for all the difficulties that have been pointed

out in this connection, this value should not be denoted by the name

sum, because usually this word is connected with the notion that a

sum has been obtained by a real summation: this idea however is not

applicable to “seriebus divergentibus”. . .

Earlier in the same year he had written a letter to Nicolaus
Bernoulli I [6] on July 17, 1745, in which he had discussed
in some detail his method of summing the series

1 − 1! + 2! − 3! + . . . + (−1)nn! + . . . .

The glimpse into Euler’s views on divergent series pro-
vided by these and other letters is quite remarkable. In-
deed, Hardy, while discussing Euler’s remarks in his letter
to Goldbach mentioned above, says that

. . . this is language which might almost have been used by Cesàro or

Borel.



Abel summability

• Euler’s favourite summation procedure which has come to be

called Abel summability :

∞
∑

n=0

an = s(A) ⇔ lim
x→1−0

∞
∑

n=0

anxn = s

Leibniz’s series sums to 1/2 by this procedure:

∞
∑

n=0

(−1)n = 1 − 1 + 1 − 1 + 1 − 1 + 1 − . . . =
1

2
(A)

Similarly

∞
∑

n=0

(−1)n

(

n + k − 1

k − 1

)

=
1

2k
(A)

• WHEN DOES AN ABEL SUMMABLE SERIES CONVERGE?

If an = O
(

1
n

)

(LITTLEWOOD)

• Wiener released the theory from its artificial limitations and

made it a branch of L1-harmonic analysis which eventually led

to the theory of commutative Banach algebras (GEL’FAND).



Functional equation for zeta

One hundred years before Riemann Euler conjectured the
functional equation for the zeta function, and verified it for
all integer and some rational values. With

η(s) = (1 − 21−s)ζ(s) = 1 − 1

2s
+

1

3s
− . . .

he obtained the relation

η(1 − s)

η(s)
= − 2s − 1

2s−1 − 1

cos sπ
2

πs
Γ(s)

He verified it for all integer values of s and for some frac-
tional values by numerical computation, conjecturing that
it should be true for all s. If s is an even positive integer,
the series at 1 − s is

1m − 2m + 3m − . . .

where m is a positive odd integer, and he used Abel sum-
mation to sum it.



The factorial series

• Euler called

∞
∑

n=0

(−1)nn!xn = 1 − 1!x + 2!x2 − 3!x3 + 4!x4 . . .

the divergent series par excellence. It does not converge any-

where and so the usual methods of summability fail. The sum

as a formal power series satisfies Euler’s differential equation

x2 dg

dx
+ g = x, g(x) ∼ e1/x

∫ x

0

1

t
e−1/tdt

The integral is asymptotic to the factorial series and its value

was computed by Euler using numerical integration:

∞
∑

n=0

(−1)nn! ∼ g(1) = 0.5963 . . .

• The theory of solutions to such irregular singular differential

equations would come into their own in the nineteenth century

with the work of many, most notably of Poincaré who made

precise the notion of asymptotic series and analytic solutions

that are asymptotic to the formal solutions.



Continued fraction for the integral

• He also obtained a continued fraction for g:

g(x) =
1

1+

x

1+

x

1+

2x

1+

2x

1+

3x

1+

3x

1+
etc ∼

∑

n≥0

(−1)nn!xn.

∞
∑

n=0

(−1)nn! = 0.596347362123 . . .

• He summed not only the factorial series but a whole class of

similar series by using these methods.

• Eventually Borel discovered the general ideas of Borel summa-

tion that could bring these and other such series summed by

Euler into the general theory. These methods and their gen-

eralizations to what are called multisummability methods have

proved tremendously powerful in quantum field theory and dy-

namical systems!



Smeared summation

• If (an)n∈Z is a sequence of complex numbers which
may not go to 0 sufficiently fast, how to make sense of
the Fourier series

∞
∑

n=−∞

aneinx ?

In modern distribution theory a la Laurent Schwartz,
the sum is a generalized function f(x):

∫

ϕ(x)f(x)dx =
∞
∑

n=−∞

an

∫

ϕ(x)einxdx

∞
∑

n=−∞

einx = δ(x)

Euler proved that

∞
∑

n=−∞

einx = 0 (0 < x < 2π)



The sum
∑∞

n=−∞
einx

Euler used the Abel method of course. Actually it is better
behaved: a Cesaro 1-summation would be sufficient. Let

sN (x) =
n=N
∑

n=−N

einx

σN (x) =
s0(x) + s1(x) + . . . sN (x)

N + 1
.

Then

sN (x) =
εN+1 − ε−N

ε − 1
ε = eix.

Since

1 + z + z2 + . . . + zN = O(1) (z = ε, ε−1 6= 1)

we have
σN (x) → 0 (N → ∞).

But
σN (0) = N + 1 → ∞ (N → ∞).

The correct result is
∞
∑

n=−∞

einx = δ(x)

which is the Parceval-Plancherel formula for the circle. Its
modern incarnations are the Plancherel formulae of Weyl,
Gel’fand, and Harish-Chandra.



Euler products

• PRODUCT FORMULA FOR ZETA AND THE IN-
FINITUDE OF THE SET OF PRIMES

1 +
1

2s
+

1

3s
+ . . . =

∏

p

1
(

1 − 1
ps

)

∏

p

(

1 − 1

p

)

= 0

• MORE GENERAL PRODUCTS AND SUMS COR-
RESPONDING TO CHARACTERS χ MOD N (FOR
SMALL N)

L(s : χ) =

∞
∑

n=1

χ(n)

ns
=

∏

p

1
(

1 − χ(p)
ps

)

L(s) = 1 − 1

3s
+

1

5s
− 1

7s
+ . . . = L(s : χ)

χ(n) =

{

1 if n ≡ 1 mod 4
−1 if n ≡ −1 mod 4
0 if n ≡ 0, 2 mod 4



Comments

• Nearly 100 years after Euler’s work, Dirichlet took up
these themes and introduced Euler products for arbi-

trary complex characters mod N for all moduli N . As
is well known he used them, especially their behaviour
at s = 1, to prove the infinitude of primes in each
residue call mod N that is prime to N .

• The generalizations to nonabelian characters and the
true significance of such generalizations for Galois the-
ory, due to Artin, Weil, Langlands, and many others
lead one directly to the modern era, namely the Lang-

lands program. This relates representations of the Ga-
lois groups of Galois extensions of number fields and
function fields to the unitary representations of reduc-
tive groups (to be precise, the groups of points of the
reductive groups over local fields and adele rings)



Functional equation for zeta

• One hundred years before Riemann, Euler obtained
the functional equation for the zeta function:

η(s) = (1 − 21−s)ζ(s) = 1 − 1

2s
+

1

3s
− . . . (s > 0)

which satisfies

η(1 − s)

η(s)
= − 2s − 1

2s−1 − 1

cos sπ
2

πs
Γ(s)

Euler wrote m in place of s and so wrote this as

1 − 2m−1 + etc

1 − 2−m + etc
= −

1.2.3. . . . (m − 1)(2m − 1) cos mπ
2

(2m−1 − 1)πm
.

He had discovered and worked out many properties of
the Gamma function, including the identity

Γ(s)Γ(1 − s) =
π

sin sπ
.

Using what we now call Abel summation he verified the
functional equation for integral values of s, conjectured
its validity for all values of s, and numerically verified
it for many values of s, namely s = i + 1

2 where i =
1, 2, 3, . . ..



Functional equation for L(s) = 1 − 1
3s + 1

5s − . . .

• Euler always worked with alternating series for ease of
numerical computation, hence with η(s) rather than
ζ(s). In addition he always considered the companion
to ζ, namely the L-function

L(s) = L(s : χ) = 1 − 1

3s
+

1

5s
− . . .

• For L, Euler obtained the functional equation (in the
same sense as for the zeta)

L(1 − s)

L(s)
=

2sΓ(s)

πs
sin

sπ

2



Epilogue

There can be really no epilogue to Euler as long as his
themes are still flourishing. His universal genius and prodi-
gious creativity are things that are wondrous and fill our
minds with awe. His ideas on divergent series led to the
modern theories of summation of divergent series and inte-
grals, eliminated the fear of dealing with them, and at the
hands of physicists, have produced very powerful predictive
tools such as the Feynman path integral formula. His the-
ory of zeta values is still unfinished, as the true structure
of the zeta values at odd positive integers remains elusive.
Perhaps only Ramanujan in the modern era came close to
Euler in discovering formulae of such surpassing beauty in
the classical framework.


