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Abstract. This article is a retrospective view of the work of George Mackey
and its impact on the mathematics of his time and ours. The principal themes
of his work–systems of imprimitivity, induced representations, projective rep-
resentations, Borel cohomology, metaplectic representations, and so on, are
examined and shown to have been central in the development of the theory
of unitary representations of arbitrary separable locally compact groups. Also
examined are his contributions to the foundations of quantum mechanics, in
particular the circle of ideas that led to the famous Mackey-Gleason theorem
and a significant sharpening of von Neumann’s theorem on the impossibil-
ity of obtaining the results of quantum mechanics by a mechanism of hidden
variables.
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1. Introduction

It is my aim here to speak about George W. Mackey, discuss some of his ideas
and their impact on the mathematics of his time, and its continuing influence on
the themes and concerns of our own era, a generation and more removed from his.
His influence went beyond the immediate circle of his students and their students,
and percolated to a very wide circle of mathematicians. The themes he initiated
played a very important role in shaping the agenda of a large part of contemporary
mathematics—more precisely, functional analysis, representation theory of general
locally compact groups, ergodic theory, and mathematical physics, all under the
umbrella of representation theory of general locally compact groups and their ho-
mogeneous spaces. He was a giant in a milieu that included men like Gel’fand,
Godement, Harish-Chandra, Mostow, Selberg, Langlands, Kostant, and a host of
others, a milieu in which he more than held his own and made beautiful and per-
manent discoveries that rivaled those of his contemporaries, and, if I may say, of
their successors.

In the beginning of his career in the early and mid 1940’s he worked in func-
tional analysis, especially the theory of locally convex topological vector spaces
which was just emerging at that time. He was the co-discoverer, along with my
late friend and colleague, Richard Arens, of the so-called Mackey-Arens topology.
But soon he gravitated towards unitary representation theory and the mathemat-
ics of quantum theory. In his own mind he probably saw them not as two distinct
disciplines but as two facets of a complete picture. Starting from the late 1940’s
and reaching into the mid 1960’s, he made fundamental contributions to the theory
of unitary representations of locally compact groups, going beyond the classical
theory where the groups were either compact or abelian. When everyone else was
trying to work out the theory on Lie groups and going for intensive and detailed
understanding, he opted for the broad picture and tried to see what can be done
for the category of all locally compact second countable groups and their homoge-
neous spaces. He discovered the surprising and rather profound fact that the locally
compact category could be better understood as a subcategory of the Borel cate-
gory (of standard Borel groups and their homogeneous standard Borel spaces), and
pioneered the measure and operator theoretic approach to geometry and analysis
on homogeneous spaces that later found fuller expression in the works of Margulis,
Zimmer, Ratner, Popa, and a host of others. His ideas in ergodic theory and the
ergodic aspects of group actions were the first sightings of a huge new continent
that Connes explored later—the theory of non commutative differential geometry.
He summarized his points of view and achievements in his American Mathematical
Society Colloquium lectures given in Stillwater, Oklahoma in 1961 [Ma1], although
earlier versions had been circulating in the form of his famous “Chicago Lectures”
[Ma2] subsequently published by the University of Chicago Press. In addition
he published two small volumes in Benjamin on Induced representations and on
Foundations of Quantum Mechanics [Ma3], as well as a widely circulated set of
notes on classical mechanics, quantum mechanics, and representation theory that
formed the basis of the education of a huge number of mathematicians including
myself. I still remember my excitement when, as a visiting assistant professor in the
University of Washington in Seattle, I came across these notes, and how much of
an impact the global and universal view of these subjects presented in these notes
had on my thinking. In his later years he wrote several expositions of his point of
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view, pedagogical as well as historical, which are very valuable for the beginner and
expert alike [Ma4].

His students and their students carried on the development of his ideas discov-
ering new things in the process. I was not a student of his in the technical sense
but had a deep interaction with him at a very early point of my career that started
me on what I should do. He was aware of this and told me once that he counted me
as a “half student”. The notion of a half student was never clarified, but I always
took it to mean that I had the freedom to work in whatever area I wanted! It was
in the summer of 1961 that I first met him. I was a visiting assistant professor
at the University of Washington in Seattle, and he came there to give the Walker
Ames lectures. He lectured every day of the week for four weeks, with ten lectures
on representation theory and the remaining ten on quantum theory. The lectures
were a trial run for his Colloquium lectures at Stillwater that were to be given later
that summer. It was a great opportunity for me to see a great master at work, and
that encounter shaped my entire mathematical career. I became a great admirer of
his way of thinking that encompassed a broad picture of mathematics and physics,
and emphasized concepts above brute calculation and ideas above technique. I was
deeply impressed by the curiosity as well as humility with which he viewed the role
of mathematics and the mathematician in the understanding, description, and in-
terpretation of the world of phenomena around us. I had a chance to discuss things
with him every day and he gave me lots of advice. I remember one such with great
vividness. We were talking about the work of Harish-Chandra and he told me that
it was based on a “terrifying technique of algebra, especially Lie algebras”, and that
if I were ambitious it should form my starting point. No one has given me better
advice since then. It was also under the influence of his lectures that I wrote my
paper on the logic of quantum mechanics [Va3] and subsequently the book [Va2]
on the geometry of quantum theory. Years later, when I returned again to quantum
foundations, my work was still animated by the themes he had introduced [CTV]
[CCTV1].

In all my encounters with him there was never any intrusive manifestation of
the gap in age, experience, and achievements between us. About him there was a
certain transparency that was almost child-like, in the presence of which all barriers
melted away. With him, in a very real and rare sense, what you saw was what you
got.

In the following sections I shall give a brief and impressionistic tour of some
parts of his world of ideas with which I have some familiarity, and hope to convince
the reader of their power and vitality even in the new frontiers of mathematics and
physics today.

2. Stone-Von Neumann theorem, systems of imprimitivity, and the

imprimitivity theorem

The first major contribution of Mackey to representation theory was to the
problem of the uniqueness of the Schrödinger representation of the Heisenberg
commutation rules in quantum mechanics. Actually the Heisenberg rules are in-
finitesimal; the global commutation rules which represent the integrated version of
these rules were obtained by Weyl (almost at the same time as Born, Heisenberg,
and Jordan obtained their results; see the very interesting account of the concerned
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events in van der Waerden’s historical account [vW], pp. 52—54). In the sim-
plest case for the kinematics of a single quantum particle moving on a line, whose
position and momentum operators are q and p, the Heisenberg rule is

[p, q] = −i (we assume that ~ = 1)

while the Weyl rule is

eiapeibq = eiabeibqeiap.

If we take the Hilbert space of states of the particle to be L2(dq) and q, p as the
(self adjoint)operators

q : ψ(q) 7−→ qψ(q), p : ψ(q) 7−→ −i
dψ

dq
,

then both the Heisenberg and Weyl rules are satisfied, with

eiap : ψ(q) 7−→ ψ(q + a), eibq : ψ(q) 7−→ eibqψ(q).

Weyl [W] (see Chapter III, §16) realized that the crucial question now is whether
this is the only choice possible. Since we can replace everything by a system which
is the direct sum of a number of copies of this one, the uniqueness has to be asserted
under the assumption that the system is irreducible(in an obvious sense). Weyl had
the very fruitful idea that the correct set up was that involving two abelian groups
in duality, say A,B with

χ : (a, b) 7−→ χ(a, b)

as the duality map into the unit circle, and a pair of unitary representations U, V
of A,B respectively, satisfying

U(a)V (b) = χ(a, b)V (b)U(a) ((a, b) ∈ A×B).

The simplest case of interest to physics is when

A = B = R, χ(a, b) = eiab.

He could not do this case but settled for proving the uniqueness in the case

A = B = ZN := Z/NZ, χ(a, b) = e2πiab/N .

Stone [St] and Von Neumann [vN1] proved the uniqueness directly when A = B =
RN with χ(a, b) = ei(a1b1+···+anbn). Mackey’s 1949 paper [Ma5] showed that the
theorem (properly formulated) is true when A = G is an arbitrary locally compact

abelian second countable group, with B = Ĝ, the dual group of G, and χ the
natural duality between a group and its dual group. The unitary representations

U, V respectively of G, Ĝ act on a Hilbert space H and satisfy

U(a)V (ξ) = 〈a, ξ〉V (ξ)U(a) ((a, ξ) ∈ G× Ĝ).

Mackey’s theorem was that every such pair (U, V ) is equivalent to a direct sum of
copies of the unique irreducible system where

H = L2(G, dq), U(a) : ψ(q) 7−→ ψ(q + a), V (ξ) : ψ(q) 7−→ 〈q, ξ〉ψ(q).

Here dq is a Haar measure on G. Mackey’s work thus placed the themes of Weyl
and Stone-von Neumann in their natural generality. It is remarkable that he was
able to do something highly non trivial in a theme already examined in some depth
by Weyl, Stone, and von Neumann.
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Although the problem is completely symmetric between G and Ĝ, in practice
one breaks this symmetry and starts by representing V (say) in diagonal form. This
means that we write

V (ξ) =

∫

G

〈q, ξ〉dP (q) (ξ ∈ Ĝ)

where P is the uniquely determined spectral measure of V . The relation between
U and V then becomes the relation

U(a)PEU(a)−1 = PE−a (∗∗)

between U and P . Note that both U and P are now defined on G, thus eliminating

Ĝ from the picture entirely, and hence also the assumption of commutativity on G.
Now P can be explicitly written down using the Hahn-Hellinger-Wecken-Nakano
theory of spectral multiplicity [Hal]. For a σ-finite measure µ on G let us write Pµ

for the projection valued measure in L2(µ) given by Pµ
E : f(q) 7−→ χE(q)f(q) where

χE is the characteristic function of the Borel set E. Then the spectral multiplicity
theory asserts that

P ≃ n1P
µ1 ⊕ n2P

µ2 ⊕ . . .

where the measures µ1, µ2, . . . are mutually orthogonal to each other and n1, n2, . . .
are distinct integers, 1 ≤ nj ≤ ∞ (note that ∞ is a possible value). The measures
µj are unique up to mutual absolute continuity. The relation (∗∗) then implies
that under translations by elements of G, for each j, the measure µj is changed
into another mutually absolutely continuous with respect to it (or as we say, in the
same measure class). But, and this is the first key observation of Mackey, there is

just one measure class on G invariant with respect to all translations, namely that

of the Haar measure dq, so that we can write

P ≃ nP dq (1 ≤ n ≤ ∞).

If Hn is a Hilbert space of dimension n, we can take nP dq as the projection valued
measure 1 ⊗ P dq on Hn ⊗ L2(dq). We still have to determine all U satisfying (∗∗)
with P as above. Certainly

U0(a) : f(q) 7−→ f(q + a) (f ∈ Hn ⊗ L2(dq))

is a possibility and we write

U(a) = C(a)U0(a).

The representation property for U now gives the relations

C(a1 + a2) = C(a1)[U
0(a1)C(a2)U

0(a1)
−1]

showing that C becomes a cocycle with values in the unitary group of Hn ⊗L2(dq)
with all C(a) commuting with P . Ignoring measure theoretic subtleties we may
therefore write

C(a) : g ⊗ f(q) 7−→ C(a, q)g ⊗ f(q) (g ∈ Hn, f ∈ L2(dq))

where C(a, q) lies in the unitary group of Hn for almost all q. The cocycle property
of C is expressed by the identity

C(a1 + a2, a3) = C(a1, a3)C(a2, a1 + a3).

Taking a1 = q, a2 = a, a3 = 0, b(q) = C(q, 0) we get

C(a, q) = b(q)−1b(a+ q).
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If we write T for the automorphism

T : g ⊗ f(q) 7−→ b(q)g ⊗ f(q)

then

T−1U0(a)T = U(a).

The irreducibility then forces n = 1 and we get the uniqueness of the Schrödinger
representation. In his paper Mackey essentially gave this proof but with meticulous
attention paid to the measure theoretic subtleties.

We have already remarked that this is really a story of a pair (U,P ) defined on
G satisfying (∗∗), where P is a projection valued measure on G and U is a unitary
representation of G. He almost immediately realized that P need only be defined
on a space X which has a G-action to make sense of (∗∗). He thus obtained what
one may now call a representation of a G-space X , namely, a pair (U,P ) where P
is a projection valued measure on a second countable locally compact space X on
which G acts continuously, G being a second countable locally compact group, and
U is a unitary representation of G, everything on a Hilbert space H, satisfying the
relation

U(g)PEU(g)−1 = Pg[E] (g ∈ G,E a Borel set ⊂ X).

The previous case is obtained when X = G with G abelian and acting by trans-
lations. This generalization proved very fortuitous as well as fertile for him and
completely determined his entire scientific thrust from then onwards. The pairs
(U,P ) generalize the systems of imprimitivity first introduced by Frobenius, and
so we shall call them (as Mackey did) systems of imprimitivity also. Like Frobe-
nius, Mackey looked at the case when the action of G on X was transitive, but not
necessarily simply transitive as in the previous setting, and obtained the complete
generalization of the classical Frobenius theorem, what is known as the imprimi-

tivity theorem [Ma6].
If the action of G is not transitive, the orbit space G\X enters the picture,

and Mackey’s theory would lead to a complete description when the orbit space is
what he would later call smooth, but in the contrary case ergodic phenomena would
appear, introducing entirely new themes that were nonclassical.

When the action of G on X is transitive but not necessarily simply transitive,
the stabilizers of points on X are non trivial subgroups of G. Let x0 ∈ X be
arbitrary and let H be the stability subgroup of G at the point x0, so that, when
G acts transitively (as we shall assume from now on), we have the isomorphism of
locally compact spaces G/H ≃ X given by gH 7−→ g[x0]. Then for any unitary
representation σ of H one can associate a system of imprimitivity (Uσ, P σ) which
can be viewed as a unitary representation of the pair (G,X), and the basic theorem
is that the correspondence

FM : σ 7−→ (Uσ, P σ)

is an equivalence of categories , from the category of unitary representations of H
to the category of unitary representations of the pair (G,X). We shall call FM the
Frobenius-Mackey functor .

To explain what a great innovating leap it was to go from Weyl-Stone-von
Neumann to Frobenius-Mackey, let me consider the special differential geometric
subcategory where G is a Lie group, X is a smooth manifold on which the action
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of G is smooth, and σ is finite dimensional. Let us also assume that there is a
G-invariant Borel measure µ on X . Then we have a functor

V 7−→ BV

from the category of finite dimensional (left) H-modules V to the category of vector
bundles on X with a G-action (these are the ones for which the pull back bundles
on G become trivial), and one knows that this is an equivalence of categories. If
we write DV for the space of smooth sections of BV with compact support, then G
acts on DV . If we now assume that V is unitary with σ denoting the corresponding
unitary representation of H , fiber-wise integration using µ will give a G-invariant
scalar product on DV whose completion HV will be a Hilbert space, namely the
Hilbert space L2(BV ) of square integrable sections of BV , on which G acts via the
natural action on sections giving a unitary representation Uσ, and P σ is defined by
P σ

E : s 7−→ χEs (s ∈ L2(BV )).
Mackey’s theory went much farther than this differential geometric special case.

In the first place no smoothness is assumed, and the σ can be infinite dimensional,
although it must be admitted that in the differential geometric setting unitarity is
not natural and one may allow σ to be non unitary. Mackey constructed a Hilbert

space bundle BV associated to the unitary V with Uσ as the action on the sections
of this bundle and P σ as above. It must be remarked that in the general locally
compact case the bundles are not necessarily locally trivial and one has to operate
in the Borel category as Mackey did. However at the time he did this work he
finessed this issue by going over to G in place of X where the pull back bundles are
trivialized and so the Hilbert space of sections becomes the subspace of L2(G, V )
satisfying

f(gξ) = σ(ξ)−1f(g) (g ∈ G, ξ ∈ H),

and G acts by left translations. One has to make a modification if X has no G-
invariant measure. However there is always a unique G-invariant measure class and
one may use any measure µ in this class and compensate for its lack of invariance
by introducing the factors

ρg =

{
dµg

dµ

}1/2

.

This amounts to tensoring by a line bundle. The representation Uσ is the repre-

sentation of G induced by the representation σ of H ,

Uσ = IndG
Hσ.

Of course P σ is the usual projection valued measure with P σ
E as multiplication by

χE . The final definitions are, with s a square integrable section,

Uσ(g)s(x) = ρg(g
−1[x])g·s(g−1[x]), P σ

Es(x) = χE(x)s(x).

Thus the Frobenius-Mackey functor is defined on the category of pairs (G,H) with
G a separable locally compact group and H a closed subgroup. He worked out his
theory of induced representations in this generality in two papers in the Annals
[Ma7] [Ma8].

In his Seattle lectures he asserted that a very large part of representation the-
ory can be brought under the theme of induced representations, and it was clear
when talking to him that he was legitimately proud of his role and contributions to
this theory. Of course it required the genius of Gel’fand and Harish-Chandra to see
that for semi simple G, induction from a parabolic subgroup is the key to producing
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irreducible unitary representations. Eventually it became clear that this method,
with suitable modifications (holomorphic induction, infinitesimal induction, coho-
mological induction, etc) will give most of the irreducible unitary representations
for semi simple G. This program took a considerable amount of time and could
not even be begun till after Harish-Chandra, in his monumental series of papers,
constructed the discrete series. Nevertheless, it is really remarkable that at such
an early stage of unitary representation theory one had the foundations for a com-
plete theory of induced representations in the full locally compact category, due
to Mackey’s work. One must remember that Mackey worked out his theory long
before the work of Chevalley, Gel’fand, Harish-Chandra, and Weil had shown the
importance of doing the representation theory of Lie groups over p-adic fields and
adele rings, and very few had a clear vision of where representation theory of non
abelian non compact groups was going. When we consider how important the con-
cepts of systems of imprimitivity and the imprimitivity theorem have turned out to
be in recent generalizations such as the theory of unitary representations of super
Lie groups and the p-adic representation theory of groups, one should say that his
feeling of pride and achievement were well justified, perhaps even too modest.

In the summer of 1962 the International Congress of Mathematicians met in
Stockholm, Sweden. Among the plenary speakers were Selberg and Gel’fand, and
their lectures addressed questions largely concerned with the decompositions into
irreducible pieces of induced representations of semi simple Lie groups. Gel’fand
had been denied permission by the Soviet authorities to attend the conference, and
Mackey delivered his address instead; if I remember correctly, Mackey mentioned
in his speech that Gel’fand had sent the manuscript through his student Kirillov.
I attended this Congress and therefore had a great opportunity to observe how
central the themes of Mackey were in representation theory.

3. Semi direct products and the little group method. Representations

of finite length and orbit schemes

Already (see [Ma6]) at the time of his creation of the theory of induced rep-
resentations for the full category of locally compact separable groups in the early
1950’s, Mackey considered its application to the description of all irreducible uni-
tary representations of semi direct products G = A ×′ H where A is abelian and
H acts on A as a group of automorphisms via h, a 7−→ h[a]; H is not necessarily
abelian. The group law is

(a1, h1)(a2, h2) = (a1 + h1[a2], h1h2).

The prototype of this type of group is the Poincaré group, important in relativistic
quantum theory, where A = R4 and H is the connected Lorentz group or rather its
simply connected two-fold cover isomorphic to SL(2,C)R where the suffix R means
that it is a question of the real group underlying the complex group. The unitary
representations of G can be viewed as a pair of unitary representations U, V of A,H
respectively, with

V (h)U(a)V (h)−1 = U(h[a]) (a ∈ A, h ∈ H).

If we write

U(a) =

∫

bA

ξ(a)dP (ξ)
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where P is the spectral measure of U , the above relation between U and V becomes

V (h)PEV (h)−1 = Ph[E] (h ∈ H,E a Borel set ⊂ Â)

and h[E] is the transform of E under the action of H on Â dual to the given action

of H on A. This is just a system of imprimitivity for the pair (H, Â) but the action

of H on Â may not be transitive. If we assume that the original representation is
irreducible, then one can prove that PE = 0 or I for any invariant Borel set E.
This last property will be true if P is supported by an orbit , but experience with
ergodic theory shows that this need not always be the case. Mackey realized that if

there is a Borel cross section for the orbit spaceH\Â, then all such P are supported
on orbits. P is then essentially transitive, and the theory applies. This led to his
famous theorem that the irreducible unitary representations are parametrized by
(m,σ) where the m are points of a Borel set meeting each orbit exactly once, and σ
is an irreducible unitary representation of the stabilizer Hm of m. For the Poincaré
group this leads at once to the classification of elementary particles by their mass
and spin. In this special case this was already carried out by essentially the same
method by Wigner in 1939 [Wi]; the stabilizers are known to the physicists as little

groups ever since.

When H\Â has a Borel cross section, we say that the semi direct product is
regular. There are semi direct products which are not regular, and these typically
involve some ergodicity brought about by arithmetical aspects. Regularity is the
norm in most applications. Verification of regularity appeared to be a global ques-
tion till the work of Effros [E] and Glimm [Gl] showed that it is really local . More
precisely, for a pair (G,X) in the locally compact second countable category, G\X
has a Borel cross section if and only if every G-orbit is locally closed in X , and that
this is the same as requiring that the Borel structure on G\X is standard, or even
countably separated.

Of the same genre is the strong suggestion made by Mackey in his Chicago
lectures that a separable locally compact group is of type I if and only if it has a
smooth dual (see below). This was proved by Glimm [Gl].

Representations of group extensions. In the case G = A×′H above, A is
normal in G, and it is natural to ask if one can treat by similar methods the more
general case where we have a group G with an abelian normal subgroup A, but do
not assume that G splits as a semi direct product. The objective is then to reduce
the representation theory of G to those of A and the subgroups of H = G/A. In
this formulation there is no need to assume that A is abelian. Mackey undertook
a study of this question and the results appeared in his paper [Ma9] although
most of them must have been obtained much earlier, since there is a discussion
of them already in [Ma2]. He assumed that A is of type I in the sense of the

theory of von Neumann algebras and that its unitary dual Â is smooth, i.e., Â is a
standard Borel space; actually these properties are equivalent, as was later shown
by Glimm [Gl]. The action of G on itself by inner automorphisms gives an action

on A and hence on Â, and it is clear that A acts trivially so that we really have

an action of H = G/A on Â. If this action is regular in the sense that H\Â is a
standard Borel space, then the semi direct product theory can be extended with

an important modification: if m ∈ Â and Hm is the stabilizer of m in H , one
requires the knowledge of projective representations of Hm to construct the unitary
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representations of G. I shall discuss projective representations a little later. But,
using the notation therein, the multipliers of the projective representations of Hm

are determined uniquely. While this does not give the inductive mechanism we need,
it turns out that the projective representations with a multiplier σ of G still reduce
only to orbits of H in the σ-dual of A and projective τ -representations of Hm (m a
fixed element in the σ-dual of A) where τ is determined by σ canonically. It is thus
clear that we have an inductive mechanism for understanding the representation
theory of G in terms of those of A and H = G/A.

This procedure, known as the Mackey machine, does indeed succeed in certain
nilpotent groups whose central sequences are of small length, but the general case
becomes very cumbersome. However, very shortly afterwards, Kirillov developed a
beautiful direct method of inducing by one dimensional representations of suitable
subgroups, to obtain the representation theory of all nilpotent Lie groups . The
architecture of a definitive theory of unitary representations of solvable groups
became clear with the works of Auslander-Moore, Auslander-Kostant, Pukanszky,
and a host of others. However all these works are in the context of Lie groups, and
Mackey’s dream of doing things in the full locally compact category seems to have
been forgotten.

Representations of finite length and orbit schemes. In covariant (Gupta-
Bleuler) quantum electrodynamics one couples the Maxwell field with the Dirac
field, and for this purpose it is very useful to realize the photon representation as a
subquotient of a non unitary but natural representation associated to the zero mass
orbit of the Lorentz group. This representation was imbedded in a family of defor-
mations by G. Rideau [R]. On the other hand, in his studies of gravity, Nakanishi
[N] introduced a family of representations of the Poincaré group which acted on
functions defined on the light cone but the action depending on the derivatives of
these functions in transverse directions to the light cone. In [CTV] this situation
was examined carefully and representations were constructed on the sections of the
1-jet bundle on the light cone, the Poincaré action being completely natural, thus
explaining the procedure of Nakanishi as well as describing the Rideau representa-
tions in a canonical manner. This suggested that there is a theory of representations
of the Poincaré group which are obtained by its natural action on the jet bundles on
the light cone. More generally, if we have a regular semi direct product G = A×′H
where A is a vector group andH a closed subgroup of GL(A), one could ask whether
the Mackey correspondence between irreducible representations of G and orbits in

Â can be extended to a correspondence between representations of finite length of
G whose irreducible constituents are associated to an orbit O, and representations
arising out of the natural action of G on sections of vector bundles defined on in-

finitesimal neighborhoods of O (orbit schemes.). This problem was studied in great
depth by A. Guichardet [Gui1] [Gui2], his student du Cloux [du C], and later,
by my student Charles H. Conley in [CHC1] [CHC2]. Their work has yielded
many beautiful results in this context. In particular Guichardet showed that the
Rideau phenomenon can arise only if the tangent space to the orbit (at a point
of it) does not admit an invariant complement (as in the case of the light cone),
and completely determined what happens in the other, complemented case, while
du Cloux studied the nilpotent case. Conley proved that when H is algebraic and
the stabilizer at a point of O has the property that all its finite dimensional rep-
resentations are rational, then all representations of length n+ 1 whose irreducible
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constituents arise from the orbit O via the Mackey correspondence, can be obtained
as subquotients of the actions of G on sections of vector bundles defined on the nth

order infinitesimal neighborhood of O. It is appropriate to draw attention to these
papers and suggest that these issues be examined again in other directions.

Weyl commutation relations and quantum information theory. The
Weyl-Mackey commutation rules for finite abelian groups have an interpretation
in quantum information theory which I shall now briefly indicate. Quantum in-
formation theory is based on the idea that information can be stored or encoded
as quantum states in a finite dimensional complex Hilbert space H transmitted
through a channel and retrieved by generalized measurements. During transmis-
sion quantum states can be corrupted by noisecharacterized by a linear subspace
E in the algebra B(H) of all operators on H. If ρ is the input state of the channel
then the corrupted output state T (ρ) is of the form

T (ρ) =
1

Tr ρ
∑

i E
†
i Ei

∑

i

EiρE
†
i

where the corrupting operators {Ei} constitute an arbitrary finite subset of E . One
does not have a knowledge of the specific subset {Ei} occurring above. To such a
corrupted output state one can apply a recovery or decoding operation R so that
the filtered output state is

R(T (ρ)) =
∑

j

RjT (ρ)R†
j

where
∑

j R
†
jRj = I. Given E , the aim of the theory of error-correcting quantum

codes is to construct a pair (C,R) where C is a ‘large’ subspace of H and R is a
decoding operation with the property that, for every state ρ with support in E ,

R(T (ρ)) = ρ.

The subspace C occurring here is called a quantum error-correcting code for E with
size = dim C. The construction of such a code C is equivalent to the construction of
the corresponding projection P on C. Such a projection P is expressed as the aver-
age of a finite abelian group of unitary operators on H coming from the projective

representation of A⊕ Â:

P =
1

|H |

∑

(a,b)∈H

σ(a, b)UaVb

where H is a subgroup of A ⊕ A and the map (a, b) → σ(a, b)UaVb is a unitary
representation of H , (U, V ) being the pair of unitary representations of A occurring

in the Weyl-Mackey theory (with Â ≃ A via a non-degenerate bicharacter of A).
For a good introduction to the ideas outlined above we refer to the book of Nielsen
and Chuang [NC]. The reader may also see [P1].

4. Super Lie groups and their systems of imprimitivity

In the 1970’s, propelled by the urge to create a fully unified theory of all the
fundamental forces, the physicists discovered super symmetry. Super symmetry is
a generalization of the usual concept of symmetry and plays an important and very
essential role in creating a unified theory of matter and radiation. Mathematically
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one needs a generalization of ordinary differential geometry, namely super geom-

etry, to define clearly what is meant by a super symmetry. A super manifold is
a topological space M with a structure sheaf O consisting of Z2-graded algebras
that is locally of the form C∞(x1, x2, . . . , xp)[θ1, θ2, . . . , θq], the θj being Grassmann
variables, i.e., satisfy

θiθj + θjθi = 0.

It is important to note that when the odd variables (which cannot be seen) are made
0, the sheaf reduces to that of the classical manifold M which is a submanifold

of the super manifold. Super manifolds are thus objects similar to the schemes
of Grothendieck, and are studied by similar techniques. Super symmetries are
automorphisms of super manifolds. The simplest example is R1|2 with O(U) =
C∞(U)[θ1, θ2]. The automorphism defined by

t 7−→ t+ θ1θ2, θi 7−→ θi(i = 1, 2)

is a typical super symmetry. A super Lie group is a group object in the category of
super manifolds. It can also be viewed as a group-valued functor on the category of
super manifolds. All the fundamental results of classical Lie theory extend to the
super Lie groups (with suitable modifications) and there is now a well understood
theory of super Lie groups and their super homogeneous spaces [Va1]. In particular
the physicists have constructed the super Poincaré groups as super symmetric ex-
tensions of the classical Poincaré groups (in arbitrary dimension), and it is natural
to ask if one can classify the unitary representations of the super Poincaré groups in
a manner similar to the classical case. It must be mentioned that because a super
Lie group is not a group but a group-valued functor, the concept of its unitary
representations is more subtle to define, but this can be done. Indeed, a super Lie
group G gives rise to the underlying classical Lie group G0 as well as to a super Lie
algebra g, with an action of G0 on g; such a pair is called a Harish-Chandra pair .
The assignment G 7−→ (G0, g) is an equivalence of categories from the category of
super Lie groups to the category of Harish-Chandra pairs. We may therefore define
a unitary representation π of G as a pair (π0, ρ) where π0 is a unitary representation
of G0 and ρ a representation of g, with suitable covariance conditions. Now the
operators of ρ are typically unbounded but one can prove the fundamental theorem
that they are essentially self adjoint and that therefore there is a uniqueness in their
definition. One can then prove the imprimitivity theorem for a super homogeneous
space G/H where G is a super Lie group and H is a closed super Lie subgroup, at
least when X = G/H is purely even, i.e., a classical manifold. This leads as in the
classical theory to a complete description of irreducible unitary representations of
super semi direct products (not just the super Poincaré groups)A×′H (A is a super
abelian group) which are regular at the classical level (when all odd coordinates
are put to 0) [CCTV1]. In turn this leads to the classification of super particles
and the elucidation of the concept of super multiplets. The physicists had already
worked out the classification of super particles and super multiplets in the 1970’s,
but their methods assumed as an article of faith that the method of little groups
could be extended to the super context; moreover these results were confined to
the super Poincaré groups and did not touch the full semi direct products in the
super category, nor did they treat the case of infinite spin in the massless case for

the super Poincaré groups. It must also be mentioned that whereas all orbits of Â
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contribute representations classically, in the super symmetric case only those with
positive energy appear.

The restriction that G/H is purely even is just for convenience. The theory
can be extended to the general case [CCTV2].

5. Intertwining numbers, double coset decompositions, and

irreducibility of induced representations

Let G,H be as above. Then we have the functor of induced representations

σ 7−→ Uσ = IndG
Hσ.

We have omitted P σ and so this can no longer be expected to be an equivalence of
categories. In particular

Hom(Uσ1 , Uσ2)

will in general be much bigger than

Hom(σ1, σ2),

and it is clearly crucial to determine

Hom(Uσ1 , Uσ2).

More generally, if Hi(i = 1, 2) are two closed subgroups and σi is a unitary repre-
sentation of Hi, then one is interested in determining

Hom
(
IndG

H1
σ1, IndG

H2
σ2

)
.

The condition
Hom

(
IndG

Hσ, IndG
Hσ

)
= C

is necessary and sufficient for the irreducibility of the induced representation.
The structure of the induced representations for finite groups became important

in the 1930’s in Artin’s work on L-functions associated to Galois representations,
especially the question of how the general representation may be constructed in
terms of representations induced from one dimensional representations (monomial
representations). However not every irreducible representation of G is monomial.
In order to prove that the Artin non abelian L-functions are meromorphic over the
whole s-plane it would be enough to prove that every irreducible representation of
G is at least a virtual linear combination∑

i

niIndG
Hi
σi

where the ni are integers which are not necessarily positive, and the σi are one
dimensional. This is what Brauer did.

Mackey’s approach to the determination of

Hom
(
IndG

H1
σ1, IndH2

σ2

)

was very direct. When G is finite the elements of the Hom space, called inter-

twining operators by him following a suggestion of Kneser , may be identified with
linear operator valued functions on G with suitable transformation properties under
translations from left by H1 and right by H2. Hence they are determined by the
double coset space

H1\G/H2.

Using this Mackey [Ma10] determined the dimension of the Hom space, the so-
called intertwining number I, as a sum over the double coset space of intertwining
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numbers associated to pairs of representations corresponding to the elements of a
general double coset. For x, y ∈ G let I(x, y) denote the intertwining number of
the representations s 7−→ σ1(xsx

−1), s 7−→ σ2(ysy
−1) of the subgroup x−1H1x ∩

y−1H2y. Then I(x, y) depends only on the double coset D = H1xy
−1H2 and so we

may write it as I(D). If D is the space of double cosets H1\G/H2, then

I =
∑

D∈D

I(D).

In particular, if H1 = H2 = H and σ1 = σ2 = σ, this formula yields the following
sufficient condition for the irreducibility of IndG

Hσ. For any x ∈ G let σx be the
representation s 7−→ σ(xsx−1) of x−1Hx, and let us suppose that for each x /∈ H
the restrictions to x−1Hx ∩H of the representations σx, σ have no irreducible in
common; then IndG

Hσ is irreducible. These results of Mackey included all known
results on induced representations for finite groups, and more importantly, set the
stage for determining the Hom space and intertwining numbers when G is no longer
assumed to be finite.

When G is arbitrary, the spaces on which the induced representations act are
Hilbert spaces, and the linear operators between them have a more complicated
structure than in the finite case. So the method of Mackey has to be supplemented
by a systematic use of analysis of linear operators between function spaces. At that
time Schwartz had just published his epoch-making books on distribution theory
and had proved a theorem (kernel theorem) from which it followed that general
linear maps between function spaces on manifolds Xi(i = 1, 2) can be represented
by distributions on X1 × X2. Bruhat, who was in Paris as a student and was
interacting with Schwartz, realized that the kernel theorem of Schwartz offered the
exact tool to carry out the Mackey analysis when G is a Lie group. Using the
theory of distributions he determined the Hom space by an almost exact analogue
of Mackey’s formula in the case when G is a connected semi simple real Lie group,
H = P is a minimal parabolic subgroup, and σ is a finite dimensional irreducible
unitary representation of H trivial on the unipotent radical of H (the so-called
principal series representations). The double coset space P\G/P is now finite, an
instance of the famous Bruhat decomposition, and Bruhat’s variant of the Makey
criterion becomes the following sufficient condition: if for all elements w of the

relative Weyl group with w 6= 1, the transform σw is not equivalent to σ, then

IndG
Pσ is irreducible. Bruhat’s debt to Mackey is very clear. Bruhat subsequently

extended his work to include the principal series for p-adic semi simple Lie groups
[Br1] [Br2].

At the risk of some digression I shall try to give a partial explanation of the
remarkable fact that in spite of the huge technical difference between the finite
and Lie theoretic cases, the criterion for irreducibility of the induced representation
(in the context of parabolic induction for semi simple groups) takes essentially the
same form. The situation is the following. We have a Lie group H acting on a
manifold X and we are interested in determining, for a given H-module E, all the
invariant E-distributions. There are two cases: when there are finitely or countably
many orbits, and when there are “moduli” for the orbits; only the first case occurs
for the irreducibility problem and there the orbit space is finite. The filtration
by dimension of the orbit space gives rise to a filtration on the space of invariant
E-distributions, and the corresponding graded spaces are (roughly) the spaces of
invariantE-distributions supported by a given orbitO ⊂ X . Unlike what happens in
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the finite or the p-adic case, the transversal differentiations can in principle produce
invariant distributions supported by and not living on the orbit O. The key now is
to replace the E-distributions T supported by O to the F ⊗ E-distributions σ(T )
that live on O, σ(T ) being the transverse symbol of T , F being the dual of the
transverse jet bundle of O in X . Because we are now dealing with distributions
living on O, the transitivity of H on O now allows the space of F ⊗E-distributions
to be identified with the space of invariants of the fiber at at a single point on the
orbit O which is determined by a simple calculation. The fiber modules however are
very different in the higher transversal directions from the module on E (roughly
speaking, E is pure imaginary while F , being geometric, is real); and this forces
the conclusion that no transversal differentiation can produce invariants. In this
manner transversal invariants are ruled out which gives the result. For details see
[KV].

One final personal remark may not be out of order. I first heard of Bruhat’s
theorem on the irreducibility of the principal series from Mackey’s 1961 Seattle
lectures and the idea came to me at that time that one could attack it infinites-
imally. I went to India in 1962 and started to work on the infinitesimal theory,
first with Varadhan, and after he left for the Courant Institute, with Ranga Rao
and Parthasarathy. We obtained the full criterion of irreducibility for all spherical
principal series (unitary or not) for complex semi simple groups and published it
in [PRV]. It was my first paper on semi simple Lie groups and its genesis can
directly be traced to the inspiration I received from Mackey’s lectures. The prob-
lem of irreducibility from the infinitesimal point of view has since been taken to
great heights-by Wallach for the complex groups (not just spherical series alone as
in our work), by Kostant–Rallis and Kostant for spherical series for real groups, by
Enright–Wallach for the fundamental series, and so on.

If G is a semi simple group, its representations come in various series , fol-
lowing the terminology first invented by Gel’fand and Naimark. Harish-Chandra
eventually succeeded in proving that the induced representations corresponding to
the various Cartan subgroups have finite length and generically irreducible. Later
on he obtained a more general irreducibility theorem where the parabolic subgroup
from which the induction is made is arbitrary, and the inducing representation has a
real infinitesimal character (real in a suitable sense). To prove this he used a variant
of Bruhat’s method [Ha1]. For a discussion of this question see again [KV].

One should not assume that the finite case is just an exercise. The theory of
unitary representations of semi simple groups defined over a finite field requires
very deep applications of algebraic geometric methods. For an interesting view see
[Ha2]. See also the article of Vogan in this volume.

6. Projective representations, Borel cohomology of groups, and the

metaplectic representation

If G is a standard Borel group, a projective representation of G is a Borel map
into the projective unitary group PU(H) of a separable Hilbert space H. Since
there is a Borel cross section for the map U(H) −→ PU(H) it can also be thought
of as a Borel map L of G into U(H) such that

L(xy) = m(x, y)L(x)L(y) (x, y ∈ G), L(1) = 1.
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Here m is a Borel map of G×G into S1 satisfying the following identities derived
from the associativity of the group multiplication:

(a) m(x, 1) = m(1, x) = 1 (x ∈ G)
(b) m(xy, z)m(x, y) = m(x, yz)m(y, z) (x, y, z ∈ G).

It is called the multiplier of L. The set of all functions(multipliers) satisfying these
identities form an abelian group C(G). It can be shown that any element of C(G)
can be the multiplier of a projective unitary representation of G if G is separable
locally compact; if m is the multiplier, representations with multiplier m are called
m-representations. Changing L to L′ = aL where a is a Borel map of G into S1

with a(1) = 1 results in the change

m(x, y) 7−→ m′(x, y) = m(x, y)
a(xy)

a(x)a(y)
.

We say m and m′ are equivalent. The m that are equivalent to 1 are called trivial
and form a subgroup B(G) of C(G). The quotient group M(G) = C(G)/B(G)
is called the multiplier group of G. It may be regarded as a Borel version of the
cohomology group H2(G,S1), with the multipliers being just the Borel measurable
cocycles.

Projective representations go back a long time. Already Schur had determined
the projective representations of the symmetric and alternating groups. Then Weyl
encountered them in his fundamental work on quantum kinematics. As we have
seen earlier, he expressed the equations of quantum kinematics as a pair of unitary
representations U, V of abelian groups A,B in duality by a bicharacter χ such that

U(a)V (b) = χ(a, b)V (b)U(a) (a ∈ A, b ∈ B).

He then regarded
(a, b) 7−→ U(a)V (b)

as a projective representation of the abelian group A×B, and formulated quantum
kinematics as the additional structure provided by a projective representation of
A×B which in applications is the affine phase space P = A⊕A where A is a finite
dimensional real euclidean space, the affine configuration space. Actually, if we use
von Neumann’s refinement, we can define

W (a, b) = e−a·b/2U(a)V (b) (a, b ∈ A)

where a·b is the scalar product of a and b, then W is a projective representation of
P with multiplier

σ((a, b), (a′, b′) = ei(a′·b−a·b′)/2 = eiβ((a,b),(a′,b′))/2

where
β((a, b), (a′, b′)) = a′·b− a·b′

is the natural symplectic structure on P . The uniqueness of Schrödinger represen-
tation is the statement that P has a exactly one (up to equivalence) irreducible
σ-representation, namely the Schrödinger representation, and that every represen-
tation is a multiple of this.

The Weyl–Wigner point of view asserts that the covariance of a quantum system
with respect to a symmetry group G is expressed by the specification of a projective
unitary representation of G in the quantum Hilbert space, and so it is appropriate
that quantum kinematics is described by the essentially unique irreducible projec-
tive representation of the phase space (it can be shown that multipliers of P are of
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the form eiγ where γ is a skew symmetric bilinear form on A × A, and so generi-
cally reduce to the one given above). Later on, Wigner proved [Wi] that for the
simply connected Poincaré group the multiplier group is trivial and so relativistic
covariance is always expressed by ordinary representations of the Poincar group;
the situation is very different for the Galilean group, as Bargmann showed in a
seminal paper on projective representations of Lie groups [Ba].

The simply connected Galilean group is an example where simple connectivity
does not ensure that all projective representations can be renormalized to be or-
dinary representations, in other words H2(G, T ) can well be non trivial for simply
connected G. For any given multiplier m we have a central extension Hm of G by
T ,

1 −→ T −→ Hm −→ G −→ 1

such that m-representations of G correspond one-one to ordinary representations of
Hm which map t ∈ T to tI for all t (see below). However, as m-varies, the extension
Hm will vary, and it is natural to ask if there is a universal central extension that
will work for all multipliers of G. Such a universal extension was constructed by
Moore [Moo2]. If G is a Lie group, which we may assume to be simply connected,
a more explicit construction of the universal central extension G of G, which will
also be a Lie group, can be found in [CDLL] where many examples are discussed.
The group G is a central extension of G:

1 −→ K −→ G −→ G −→ 1

with
K = H2(G,R) = H2(Lie(G),R).

(The last cohomology is a finite dimensional vector space.) The main result is that
there is a natural bijection between physical equivalence classes of irreducible uni-
tary representations of G that are scalars on K and the physical equivalence classes
of projective irreducible representations of G (physical equivalence is coarser than
unitary equivalence and requires only an equivalence implemented by an operator
which is either unitary or antiunitary). The Galilean group in the 2+1 dimensional
case is important in the treatment of genuine two dimensional systems.

The existence and explicit construction of G allows us to replace symmetry
actions of G by actions via unitary representations of G which are scalars on K. It
can be shown that for the Lie group G with Lie algebra g, the condition [g, g] = g

is sufficient to ensure that H2(G, T ) = 0 [Di]. But it is not necessary; the result is
true for the Galilean groups in space times of dimension ≥ 4 which do not satisfy
the above sufficient condition [De].

Brauer groups and Borel cohomology. Mackey’s theory of representations
of group extensions led him to the notion of projective representations, and, for
any multiplier σ, the σ-dual of a separable locally compact group, namely the set
of equivalence classes of the irreducible σ-representations of the group in question.
The multiplier group is a special case of the group H2(G,A) of A-valued multipliers
where A is an abelian separable locally compact group. Classically, when the groups
are finite, the group H2(G,A) for arbitrary G and abelian A is an example of a
Brauer group and its elements classify the central extensions of G by A, namely the
groups H such that A is central in H and H/A ≃ G. Mackey discovered that this

interpretation remains valid even in the locally compact category. The first point is
thatH/A does not in general have continuous sections but always has Borel sections
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and so one can associate an element of H2(G,A) to the extension H ; this shows
the naturalness of working in Borel categories. In the reverse direction, given a
A-valued multiplier m, the classical Brauer construction gives a group structure on
Hm = G×A dependent on m such that H is an extension with multiplier m. But,
sincem is only Borel, Hm will not be locally compact in the product topology unless
m is continuous, which it seldom is. If m is locally continuous near the identity, we
can use the product topology near the identity of G and then use translations by
group elements to give the topology of the group; this will lead to the cases where
H is a locally trivial bundle over H/A and thus take care of all Lie groups. In the
general case this construction yields only a Borel group. But Mackey noticed that
it has an invariant measure, namely the product of the Haar measures on G and
A. Now, Weil had shown that given an invariant measure on a group one can give
it what we now call the Weil topology and the completion of the group in its Weil
topology is locally compact. Mackey observed that when the group has an invariant
measure and its Borel structure is standard, it is already locally compact in its Weil

topology, thus realizing Hm as a locally compact separable group. The construction
of Brauer groups in the Borel category is one of his beautiful achievements [Ma11].

It became clear from Mackey’s work that Borel cohomology of locally compact
separable groups is something that should be explored systematically and in all
degrees. His student Calvin re did precisely that in a series of papers; in particular
he linked this theory with classfield theory of arithmetic fields [Moo1].

Metaplectic representation. Let us go back to the Weyl formulation of
quantum kinematics for a configuration space Rd so that we have a pair of unitary
representations of U, V of Rd such that

U(a)V (b) = eia·bV (b)U(a).

So

(a, b) 7−→W (a, b) = U(a)V (b)

is a projective representation of P = Rd ⊕ Rd with multiplier m where

m((a, b), (a′, b′)) = eia′·b.

If we now go to the equivalent projective representation

(a, b) 7−→ e−(i/2)a·bW (a, b)

the multiplier is changed to

m∼((a, b), (a′, b′)) = e(i/2)[a′·b−a·b′].

Motivated by this we shall define for any separable locally compact abelian group

A the multiplier σ for the group G = A× Â by

σ((a, ξ), (a′, ξ′)) =
〈a′, ξ〉

〈a, ξ′〉
.

It is easy to verify that σ induces a perfect pairing of G × Ĝ with itself and so it
is natural to call the multiplier σ symplectic; moreover any automorphism of the
group G that leaves σ invariant will be called symplectic also. Let Sp(G) be the
group of symplectic automorphisms of G.
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Suppose that A has the property that x 7−→ 2x is an automorphism of A; the

same is then true for Â also and we say that A and Â are 2-regular . Let U, V be

unitary representations of A, Â respectively such that

U(a)V (ξ) = 〈a, ξ〉V (ξ)U(a)

as in Mackey’s work. We know that any such pair U, V is a direct sum of copies of
a unique irreducible pair. If we write V 2(ξ) = V (2ξ) it is then immediate that the
same is true for the pair U, V 2 which now satisfy

U(a)V 2(ξ) = 〈a, 2ξ〉V 2(ξ)U(a).

Write now
W (a, ξ) = 〈a, ξ〉−1U(a)V 2(ξ).

Then W is a projective representation of G = A⊕ Â with the multiplier σ defined
above, and W gives back U, V by W (a, o) = U(a),W (0, ξ) = V 2(ξ). Thus we can
say that when A, hence G also, is 2-regular, every σ-representation of G is a direct
sum of copies of a unique irreducible one, which we can take in the standard form
in H = L2(A).

Mackey’s generalization of the Stone-von Neumann uniqueness of the Schrödinger
representation now shows that to any symplectic automorphism s of G there is a
unitary operator R(s) in H, unique up to a phase factor, such that

W (s(a, ξ)) = R(s)W (a, ξ)R(s)−1.

The map s 7−→ R(s), because of the uniqueness of R(s) up to a phase factor,
determines a projective representation of G. In other words, associated to any

2-regular locally compact separable abelian group we have a canonical projective

unitary representation of the symplectic group Sp(G) of G = A⊕ Â in L2(A).
The history of the discovery of this projective representation of the symplectic

group is very interesting. It was discovered by Andre Weil, certainly in the case
when A is a vector space over a local field of finite dimension, or a free finite module
over the adele ring of a global (arithmetic) field; he in fact credits the genesis of
this representation to the work of Siegel on quadratic forms. In a pair of seminal
papers, Weil discussed this representation and its role in arithmetic, casting light
on the Siegel theory [We1] [We2]. In 1962, when he lectured in Harvard about
these results, it was pointed out to him that at least when the local field was R, the
representation had been discovered independently by Irving Segal, and that Shale,
a student of Segal, had then constructed this representation in the case when A
was not locally compact , in fact when it was the additive group of a real Hilbert
space! [].

In a paper he published in 1965 [Ma12] Mackey treated these matters in com-
plete generality. He showed that when A is not 2-regular, new phenomena arise.
Let A2 = 2A and let A2 be the kernel of the map x 7−→ 2x of A. Then he showed,
using his work [Ma9], that there are more irreducible σ-representations and con-
structed a natural imbedding of G/A2 ×A2 into the σ-dual of G, and further that
this imbedding is a bijection if and only if A2 is closed in A. Let G2 be the subgroup
of elements of order 2 in G. Then he showed that, in the case when A2 is closed
in A, for each character χ of G2 there is a unique irreducible σ -representation Wχ

of G that coincides on G2 with a multiple of χ, and the Wχ are all the irreducible
σ-representations of G; if W0 is the one for χ = χ0(a, ξ) = 〈a, ξ〉, and Sp0(G) is
the subgroup of the symplectic group fixing χ0, then we have a natural projective
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representation of Sp0(G) in the space of Wχ0

0 . In this manner he obtained the
complete result involving the canonical projective representation of the symplectic
group of G without any restrictions on A except that A2 be closed in A.

It is possible to describe Mackey’s uniqueness of the Schrödinger representation
in a more general framework [DV] [Mu]. Let G be any separable locally compact
abelian group. If m is a multiplier for G, then

m∼(x, y) =
m(x, y)

m(y, x)

can be proved to be a continuous bicharacter (a character in each argument); we
shall say that m is a Heisenberg multiplier if m∼ is symplectic, i.e., the map from

G to Ĝ induced by m∼ is an isomorphism. If G is 2-regular, there is a unique sym-
plectic multiplier in the cohomology class of m so that m itself may be assumed to
be symplectic. The most natural and general form of Mackey’s uniqueness theorem
without any assumption on G is now the following:

Theorem (Mackey). If m is a Heisenberg multiplier for the separable locally

compact abelian group G, then G has a unique irreducible m-representation, and

every m-representation of G is a direct sum of copies of this unique irreducible one.

This theorem of Mackey has been used by Mumford [Mu] in his Tata lectures on
theta functions quite systematically. The passage from m to m∼ is quite natural;
in fact, if Hm is the extension of G by the circle group T so that

1 −→ T −→ Hm −→ G −→ 1

is exact, the commutator map x, y 7−→ xyx−1y−1 descends to a map G×G −→ T
which works out to m∼. The Heisenberg condition on m is that m∼ gives rise to a
perfect pairing.

Two additional remarks are appropriate here. First, the work of Shale, al-
though restricted to the real case, is more general because the groups are no longer
locally compact; indeed, the situation is inspired by quantum field theory, as I have
discussed earlier. Here the commutation rules do not have a unique representation
and so it is not immediately clear how we get the projective representation of the
symplectic group; indeed, if we start with an invariant measure class associated to
a real infinite dimensional Hilbert space (one has to be careful here as the measures
are not defined on the real Hilbert space), a symplectic automorphism will change
the measure class into another one which is often singular with respect to it. One
has to introduce a restricted symplectic group whose elements preserve the measure
class. For some good choices of the measure class Shale proved that the correspond-
ing restricted symplectic group is the subgroup of the full symplectic group of maps
s such that (s∗s)1/2 is of the form I + S where S is of the Hilbert-Schmidt class.
Shale’s theory was later extended to the p-adic case by [Z]. Much remains to be
done here.

The second remark concerns with what Weil did. He did not stop with the
projective representation of the symplectic group; in the local and adleic cases that
he treated, he proved that the projective representation in question becomes an

ordinary representation when we pass to the 2-fold cover of the symplectic group,
the so-called metaplectic group; Shale had done this for R. The lifted unitary
representation is often called the metaplectic representation. I do not know if
Mackey had any results on the order of the multiplier of his representation of the
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symplectic group in the case of a general locally compact separable abelian A. This
seems to be an interesting question in the general framework that Mackey initiated.

7. Foundations of Physics: hidden variables and the Mackey-Gleason

theorem

Mackey’s approach to science in general, and physics in particular, was one of
great curiosity combined with great restraint. Unlike many mathematicians he was
not trying to solve all the problems of the physicists, nor was he trying to tell the
physicists what they were or should be doing. He was very much more modest,
content to understand and interpret the physicists’ conception of the world from a
mathematician’s point of view.

Hidden variables, the Mackey problem of measures on questions, and

Gleason’s theorem. With the development of quantum theory in the 1920’s it
became clear that an entirely novel view of physical reality had emerged as the
foundation of the new theory, a view that contrasted very sharply with the causal
and deterministic view of spacetime events and their description that had been the
basis hitherto for all classical physics. In the quantum theoretic view, in even the
most idealized state of a quantum system, one can in principle determine only the
statistical distributions of the various physical quantities, because of the inherently
uncontrollable interaction between the phenomena that are being measured and
the measuring apparatus. Although it is often possible to arrange matters (called
preparation of state) so that a particular observable has a sharply defined value
(has no dispersion) or at least has arbitrarily small dispersion, this can be done
only at the cost of other observables having large dispersions. There is no state in

which all observables have sharply defined values or arbitrarily small dispersions.
Obviously this circumstance created a huge amount of discussion of fundamental
matters, among which discussions in the various Solvay conferences between Ein-
stein and Bohr figured very prominently [Bo]. The basic question became whether

the quantum mechanical description of reality was complete. When von Neumann
wrote his great book in 1933 [vN2] he gave a systematic mathematical and physical
discussion of this question at the most general level.

Like every one who came after von Neumann, Mackey was profoundly influenced
by von Neumann’s great 1932 classic [vN2]. The question whether the quantum
mechanical description of reality is complete can be made accessible to a math-
ematical treatment by posing it as the problem of hidden variables in quantum
mechanics: is it possible that the statistical features of the usual model for quan-
tum theory are due to our incomplete knowledge of the state of the system, and
arise because of averaging over a space of parameters (the hidden variables)? In
quantum mechanics the states are unit vectors up to a phase in a Hilbert space,
and it is a remarkable feature of the theory that no matter what the state is, there
are observables which do not have a sharply defined value, or, have positive disper-
sion. In other words the states of quantum mechanics are not dispersion-free. If
now there are hidden parameters, the states defined by specific values of the hidden
parameters would define dispersion-free states (although these would be highly ide-
alized and may not be accessible to any practical technology); the situation would
be very much like in statistical mechanics. The quantum states would then be
mixtures of these idealized dispersion-free states, and so we would be able to write
the quantum states as convex linear combinations of other states. Therefore, to



22 V. S. VARADARAJAN

put to rest the possibility of an explanation by hidden parameters of the statistics
derivable from the standard model of quantum mechanics, one must answer in the
affirmative the following mathematical question: using the most general definition

of a state of a quantum system, is it true that the quantum states defined by the
unit vectors cannot be written as convex combinations of other states, i.e., they
are the extreme points of the convex set of all states? The answer to this problem
of course depends on the general definition of a state of a quantum system, and
clearly one has to base the argumentation on the widest interpretation of the notion
of the quantum state in order to have the most convincing result. The answer, as
von Neumann saw it, was a resounding negative [vN2], and after many variants
and modifications von Neumann’s analysis still remains the best treatment of this
question (see the wonderful reprint collection [WZ] where the various articles on
this question are reprinted). The approach of von Neumann was to observe that
no matter what models are used—the usual quantum model, the hidden parame-
ters model, or any other—for theoretical purposes all one needs to consider are the
expectation values of the observables measured in the various states of the system.
Hence one can identify the state of the system with the expectation value functional
on the set of bounded observables in the system. Now, in the usual model, whose
statistics form the object of scrutiny, the set of bounded observables is BR(H), the
set of Hermitian elements of the algebra B(H) of all bounded operators. BR(H) is
not an algebra but is a real vector space and contains the square of each element.
The properties that von Neumann assumed for the expectation functional

E : A 7−→ E(A) (A ∈ BR(H))

were as follows:

(a) E is linear
(b) E(1) = 1
(c) E(A2) ≥ 0 for all A
(d) E is continuous in the strong operator topology.

He then determined all such functionals, and showed that the pure states, defined
as the extreme points of the convex set of states, are precisely those given by the
usual unit vectors up to a phase of the Hilbert space. Let us define a density matrix

as a bounded positive self adjoint operator of trace class and having trace 1. Then
von Neumann’s analysis showed that the expectation functionals are precisely those
of the form

EU : A 7−→ Tr(AU) = Tr(U1/2AU1/2).

The correspondence

U 7−→ EU

is convex and one-one, and so, as the density matrices form a convex set, we have
only to determine the extreme points of this set. It is not difficult to see that
the extreme points are the one dimensional projections and so are labeled by unit
vectors up to a phase, thus answering the question of hidden parameters in the
negative.

If one wants to make a critical assessment of von Neumann’s analysis, the place
to begin with is the axiomatization of the expectation functional. Now, if A and B
are quantum observables, von Neumann used the ensemble method characteristic of
thermodynamics to give an operational definition of A+B even when A and B are

not simultaneously observable. This allowed him to assume that the expectation



REPRESENTATION THEORY AND FOUNDATIONS OF PHYSICS 23

value is additive: E(A+B) = E(A)+E(B). The assumption of countable additivity
for E is a consequence of the strong continuity and may be regarded as a regularity
assumption; we shall temporarily set this aside and concentrate just on the linearity.
If A and B are simultaneously measurable, then there is no difficulty in measuring
A + B and obtaining the additivity of the expectation value, since A and B are
random variables on a single classical probability space. When A and B are not

simultaneously observable, the definition of A + B as well as the additivity of the
expectation value are less convincing. Indeed, in many instances, the distributions
of A,B, and A+B are such that they cannot be derived from a single probability
distribution on the plane R2. Moreover, this is not some arcane issue as von
Neumann himself observed: the very definition of the Hamiltonian in the form

H =
1

2
(p2

1 + p2
2 + · · · + p2

n) + V (q1, q2, . . . , qn)

shows that we are concerned precisely with this type of situation even in the simplest
applications of quantum theory. The pi and qj commute among themselves and so

A =
1

2
(p2

1 + p2
2 + · · · + p2

n), B = V (q1, q2, . . . , qn)

are individually well defined, but H = A + B requires a stretch of imagination.
Even in the case of the usual model, A and B are defined very simply as self
adjoint operators, but A+B is only symmetric on the intersection of the domains
of A and B; that it has a unique self adjoint extension is true under very general
circumstances, as was first proved by Kato, but this is not an obvious result.

The starting point of Mackey’s analysis is that one should assume additivity

of the expectation only for commuting observables. To discuss the structure of the
expectation functionals we may restrict ourselves to what Mackey called questions ,
namely, observables which take only the two values 0, 1. These are represented by
projections in the Hilbert space. The expectation value thus defines a function

µ : P 7−→ µ(P )

on the set of projections and having values in the interval [0, 1] of the real line. If
P and Q are orthogonal projections, then P +Q is again a projection and it is clear
that we have

µ(P +Q) = µ(P ) + µ(Q)

so that µ is finitely additive. In other words µ is a finitely additive probability

measure on projections . If P and Q are projections which are not orthogonal,
P + Q may not be a projection; it is still a bounded observable and so has an
expectation value, but we do not assume that the expectation of P +Q is the sum
µ(P ) + µ(Q) as part of the data defining the state. For any bounded Hermitian A
with spectral measure PA,

µA : S 7−→ µ(PA
S ) (S a Borel set ⊂ R)

is a finitely additive probability measure with bounded support on the real line and
we can define the expectation value of A as

Eµ(A) =

∫

R

tdµA(t).

(There is no difficulty in defining integrals of bounded functions with respect to
finitely additive measures). It is then easy to see that Eµ satisfies the properties of
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von Neumann except that the additivity is asserted only for commuting operators:

Eµ(A+B) = Eµ(A) + Eµ(B) (AB = BA).

Conversely, any functional E on BR(H) with the properties assumed by von Neu-
mann except that additivity is assumed only for commuting elements, arises from
a unique µ.

We shall call countably additive probability measures on the lattice of projec-
tions Mackey states . The original states in von Neumann’s analysis will be called
von Neumann states . The finitely additive probability measures on the lattice of
projections are called generalized Mackey states . If µ is a generalized Mackey state,
then for any self adjoint operator A with spectral measure PA,

Eµ(A) =

∫

R

tdµA(t).

It is far from obvious that Eµ thus defined is unrestrictedly linear for a Mackey state
µ, generalized or otherwise, nor is it clear why it should be strongly continuous. In
other words a Mackey state need not be (define) a von Neumann state.

Mackey states which are von Neumann states exist in abundance. If U is a
density matrix

µU : P 7−→ Tr(PU) = Tr(U1/2PU1/2)

is a Mackey state which is even a von Neumann state because of the linearity
and continuity properties of Tr. We thus have three levels of states of increasing
generality:

A. von Neumann states EU , defined by density matrices U
B. countably additive Mackey states, defined by countably] additive proba-

bility measures on the lattice of projections of the Hilbert space H
C. the generalized Mackey states, defined by finitely additive probability

measures on the lattice of projections of H.

When he arrived at this point in his analysis, Mackey asked his colleague Gleason
if it could be proved that any countably additive probability measure on the lattice
of projections is of the form µU for a density matrix U . As he told me in Seattle,
Gleason almost immediately reduced this question to the case when the underlying
Hilbert space is real and of dimension 3 (the result requires the dimension to be
≥ 3, there are counter examples in dimension 2); very soon afterwards he proved
the result in dimension 3 [Gle]. Thus, in dimension ≥ 3, Mackey states are von
Neumann states.

Let us now use Gleason’s result and complete the proof of a sharpening of
Mackey’s analysis, namely that even if we take the state to be the most general

one of level C, there are none which are dispersion-free. It is first of all easy to
see that if a finitely additive µ is dispersion-free then it has to be two-valued, i.e.,
it takes only the two values 0 and 1; indeed, if for some projection P we have
0 < µ(P ) = p < 1, then the observable P takes just the two values 0 and 1 with
respective probabilities p and 1 − p = q; it is thus a classical binomial variable and
its dispersion is pq > 0. The question therefore becomes the following: are there
any two-valued finitely additive probability measures on the lattice

L(H) of projections on a Hilbert space? We shall now show that Gleason’s
theorem implies that if dim(H) ≥ 3 then there are no two-valued finitely addi-

tive probability measures on L(H) and hence no dispersion-free states . In fact, if
3 ≤ dim(H) < ∞, then all finitely additive measures on L(H) are automatically



REPRESENTATION THEORY AND FOUNDATIONS OF PHYSICS 25

countably additive, and so Gleason’s theorem shows that µ = µU for a density ma-
trix U ; if φ is a unit vector and Pφ is the projection on the one dimensional space
spanned by φ, then µU (Pφ) = (Uφ, φ), and this, as a function of φ is continuous and
takes all values between 0 and 1, thus certainly not two-valued. If dim(H) = ∞,
the isomorphism H ≃ H ⊗ C3 shows that we can imbed L(C3) inside L(H), and
so, if µ is two-valued on L(H), the restriction of µ to the image of L(C3) under the
above imbedding is a two-valued measure on L(C3) the existence of which we have
just shown to be impossible. Thus the non existence of two valued finitely addi-
tive measures on L(H) is proved also when dim(H) = ∞. Actually this argument
yields the much more general result that if the quantum logic contains L(Cn) as a

sublogic for some n ≥ 3, it does not admit any two valued measures, and hence no

dispersion free states .
The reader should note the contrast with Boolean algebras where there are al-

ways two-valued measures . In the Boolean algebra case this result, going back to
Stone, is at the very foundation of set theory and Boolean logic, indeed, it is equiv-
alent to the axiom of choice when properly formulated; it is therefore remarkable
that the Mackey–Gleason analysis led to the discovery that the logic of quantum
mechanics, with its characteristic feature of the complementarity principle, is at a
profound variance with classical logic.

Unfortunately, by the time these results were obtained, von Neumann was
dead, but one can be sure however that they would have pleased him. There is
also another point, namely, the question of the possible extension of Gleason’s
theorem to the lattice of projections in other von Neumann algebras. The Gleason
theorem has indeed been extended to the case of the lattice of projections on fairly
arbitrary von Neumann algebras with some mild restriction. The subject is a part
of non commutative integration which was pioneered by von Neumann and which
has eventually led to the modern theory of non commutative geometry.

One final remark may be made. In recent years there has been a flurry of activ-
ity and results, both experimental and theoretical, regarding the hidden variables
question. The theoretical results (Bell’s inequality etc) do not change anything
in the von Neumann–Mackey–Gleason treatment; they are less general, being de-
pendent on some model or the other. Their significance lies in the fact that they
brought the question of consistency and completeness of quantum mechanics to the
realm of the experimenter, and led to some beautiful experiments [AG]. For all
these matters see [BL] [Va2] [WZ].

Quantum field theory. When physicists first started to develop quantum
field theory in the early 1930’s after Dirac’s theory of radiation (see [vN2]), the
idea was to apply the procedure of quantization to a classical system of infinitely

many degrees of freedom, such as the Maxwell electromagnetic field. The classical
description then involved an infinite dimensional phase space and so one had an
infinite number of canonical variables q1, q2, . . . , p1, p2, . . . . But after some time
people realized that the commutation rules no longer have a unique representation
and so the procedure of quantization and dynamical evolution became ambiguous.
In the early 1950’s Friedrichs, and somewhat later, Segal, discussed why the com-
mutation rules have different representations. In his Seattle lectures Mackey put
this problem in a framework closely related to his 1949 paper [Ma1] in a formula-
tion that made it crystal clear why these new phenomen were coming up. He had
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two abelian standard Borel groups G and H in a Borel duality

〈·, ·〉 : G×H −→ S1

and framed the basic question as the construction of pairs (U, V ) where U, V are
unitary representations of G,H respectively, satisfying the Weyl relation:

U(g)V (h) = χ(g, h)V (h)U(g) ((g, h) ∈ G×H).

The difference from the classical situation is that the groups are G,H are no longer
locally compact, and in fact are usually defined by some topological data that makes
them infinite dimensional, reflecting the fact that the classical system has infinitely
any degrees of freedom. If G has an invariant measure class under translations,
then one can construct an associated Schrödinger representation; but now it is no
longer reasonable to expect that the invariant measure class is unique, and so one
gets different Schrödinger representations corresponding to the different invariant
measure classes.

I do not know if he pursued his way of formulating quantum field theory beyond
these preliminaries, especially as an alternative to the usual treatments of what is
now called constructive quantum field theory. It would be interesting to see if a
general approach along the lines of his ideas would throw additional light on the
problems of quantum field theory. His book [Ma4] contains a systematic exposition
of an extensive part of quantum theory from the point of view of unitary group
representations. In his later years he gave some detailed expositions of his approach
to the group theoretic foundations of quantum theory that touched on a variety of
topics, including gauge theory. The interested reader should look up some of these
[Ma13]; the article (a) in this set of references was the one that I came across when
I was a graduate student and it changed my entire perspective instantly.

Canonical commutation relation and quantum stochastic calculus. At
the risk of some digression I shall point out that there are connections between the
field commutation rules and what is now called quantum stochastic calculus. The
general philosophy is that the dynamics of any irreversible quantum system is me-
diated by a one-parameter semigroup {Tt, t ≥ 0} of linear, unital and completely
positive maps on a C∗ algebra A with identity with the infinitesimal generator L.
For brevity and simplicity we confine ourselves here to a finite level system where
A = B(H) is the algebra of all operators on a finite dimensional Hilbert space H
and the map t 7→ Tt is continuous. It is known that L = L0 + L1 where L0 de-
scribes quantum fluctuations from a reversible Heisenberg or Schrödinger dynamics
whereas L1 describes the dissipation part which contributes to irreversibility. It is
a part of the general theory that the semigroup {Tt} is a coarse-grained version of
the unitary evolution {Ut} of a larger quantum system which is made of the original
system and a bath (or noise) consisting of a collection of harmonic oscillators. The
Hilbert space of such a bath is usually described by a boson Fock space (or a second
quantization space). Quantum stochastic calculus [HP] [Me] [P2] [SG] provides
a framework which facilitates the task of making this description mathematically
precise.

To any Hilbert space K associate the boson Fock space Γ(K) defined by

Γ(K) = C⊕K ⊕K2 ⊕ · · · ⊕ Kn ⊕ · · ·

where Kn is the n-fold symmetric tensor product of copies of K. We have the usual
annihilation operators and their adjoints called creation operators whose domains
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include a common core D and satisfy the canonical commutation rules. Then the
Hilbert space Γ(K) is an example of a continuous tensor product admitting the
factorization

Γ(K) ∼= Γ(L2[0, t] ⊗ K) ⊗ Γ(L2[t,∞] ⊗ K) ∀ t ≥ 0.

We introduce the ‘system + bath’ Hilbert space

H̃ = H⊗ Γ(H) = Ht] ⊗H[t ∀ t ≥ 0.

where Ht] = H⊗ Γ(L2[0, t] ⊗ K), H[t = Γ(L2[t,∞] ⊗ K) ∀ t ≥ 0 and H0] = H. A

family {X(t), t ≥ 0} in H̃ is said to be an adapted process if X(t) = X0(t) ⊗ I[t ∀ t
whereX0(t) is an operator in Ht] and I[t is the identity operator in H[t. Heuristically,
such operatorsX(t) describe observables that depend on the evolution of the system
and the bath up to time t. Relative to a suitable family of conditional expectations
the creation and annihilation processes (defined by following the intuition of free
field theory) exhibit martingale-like properties and hence permit a definition of
quantum stochastic integrals along the lines of the classical theory of stochastic
integration in the sense of Ito. For a full account of this quantum Ito’s formula we
refer to [HP] [P2]. The classical Ito’s formula is a consequence of this quantum
version.

We now look for a unitary operator-valued adapted process U = {Ut, t ≥ 0}
which is a solution of the quantum stochastic differential equation of the exponential
type. It is a theorem that there exists a unique operator-valued adapted process
satisfying this equation and the semigroup {Tt} with generator L is obtained from

Tt(X) = E0]Ut(X ⊗ I[0)U
†
t ∀ t ≥ 0, X ∈ B(H).

In other words Tt is the vacuum conditional expectation of the Heisenberg evolution

by the unitary operator Ut in the system plus noise Hilbert space H̃. For more
detailed accounts and current developments we refer to [Me] [P2] [SG].

Concluding remarks. I have restricted myself only to those parts of Mackey’s
work with which I have some familiarity. I have not discussed his work and ideas
in many other areas such as ergodic theory which have been both profound and
influential. In fact, his notion of virtual subgroups was the first hint that there was
a deep theory hidden behind ergodic phenomena. It must be clear to the reader
even from my rather selective discussion of his work that Mackey was a thinker of
exceptional depth and originality, and understood at a very fundamental level the
relation between the theory of representations of groups and homogeneous spaces
and modern physics. Nowadays many people are searching for a true generalization
of the geometry of the physical world that would accommodate both gravity and
quantum theory–which will be non commutative at the Planck scale and be a very
good approximation to the Riemann–Einstein geometry of spacetime at the ordi-
nary scale. Although he himself did not seriously participate in these developments
I believe that Mackey’s ideas and themes will find a resonance in this new frontier.
It is the task of the younger generation to discover this and move forward.
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ematica, 113 (1965), 1–87.
[W] H. Weyl, Group Theory and Quantum Mechanics, Dover, 1931.
[WZ] J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurement , Princeton Uni-

versity Press, Princeton, 1983.
[Wi] E. P. Wigner, Unitary representations of the inhomogeneous Lorentz group, Ann. of

Math., 40 (1939), 149-204.
[Z] E. P. Wigner, Representations of commutations relations for p-adic systems of infin-

itely many degrees of freedom. Print-91-0246. Steklov Math. Inst. Moscow.

University of California, Los Angeles, USA
E-mail address: vsv@math.ucla.edu


