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Abstract. The classical Airy function has been generalised by Kontsevich to a function of a matrix
argument, which is an integral over the space of (skew) hermitian matrices of a unitary-invariant expo-
nential kernel. In this paper, the Kontsevich integral is generalised to integrals over the Lie algebra of an
arbitrary connected compact Lie group, using exponential kernels invariant under the group. The (real)
polynomial defining this kernel is said to have the Airy property if the integral defines a function of
moderate growth. A general sufficient criterion for a polynomial to have the Airy property is given. It is
shown that an invariant polynomial on the Lie algebra has the Airy property if its restriction to a Cartan
subalgebra has the Airy property. This result is used to evaluate these invariant integrals completely
and explicitly on the hermitian matrices, obtaining formulae that contain those of Kontsevich as special

cases.

1. Introduction. The Airy function was discovered by the mathematician and as-
tronomer Sir George Biddell Airy, who first introduced and discussed it in his paper [A]
of 1838. He defined it as the (improper Riemann) integral

e T (w3
/ cos <— (— — mw)) dw
0 2\ 3
and regarded it as a function of a real variable m. Airy tabulated its values in his paper,
and suspected that it could be expressed using known integrals; it was later found to
be expressible in terms of the Bessel function. Numerous applications have since been
found, both in mathematics and in the physical sciences; the reader is refered to [VS] for
an encylopadic survey of these.

A complex-valued version of Airy’s original function, which we refer to as the Airy
function or Airy integral, is given by

Alz) = / G- gy (7 € R).
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Since this definition is classical, it is appropriate to consider this integral as an improper
Riemann integral, but one could equally well regard it as an integral over an appropriately
chosen contour in the complex plane (see [VS], p.124). It is a classical result that the
Airy function satisfies the ordinary differential equation

A"(z) + zA(x) = 0.

It can be shown that, up to a multiplying constant, it is the only solution to this equation
having polynomial growth in x, and that it extends to an entire function on C. One can



also view it (this will be our point of view) as a distribution, being the Fourier transform
of the tempered distribution e®"/3.

In [K], Kontsevich introduced the matriz Airy function A(X),
. 3
A(X) = / T XY)gy (X € H(n)),
H(n)

where H(n) is the vector space of n x n hermitian matrices. This integral does not exist
in the sense of Lebesgue, but it is well-defined as a distribution. The formal similarity
of the matrix Airy function to the Airy function accounts for its name. We sometimes
refer to A(X) as the matriz Airy integral. Kontsevich observes that A(X) satisfies the
elliptic partial differential equation

AA(X) + tr(X)A(X) = 0,

and so is a smooth function by a standard theorem. In his paper, he gives a moduli-
theoretic interpretation of his function, and uses it to prove a conjecture of Witten [W].

The classical Airy function A(z) is a special case of functions of the form

A= [ eray @eR)

— 00

where p is a real polynomial on R; the specialization p(y) = y3/3 gives A(x). The matrix
Airy function A(X) is a special case of functions of the form

A (X) = / P)=(XY) gy (X € H(n)),
H(n)

where p is a real U(n)-invariant polynomial on H(n); the specialization p(Y) = tr(Y?3/3)
gives the Kontsevich integral A(X). Note that the definition of A(X) can equally well
be taken on the space of skew-hermitian matrices by changing Y to (—1)'/2Y, where the
skew-hermitian matrices are interpreted as the Lie algebra of the unitary group U(n).

These remarks suggests a far-reaching generalization. Let G be a connected compact
Lie group and V be a real finite-dimensional euclidean space, with scalar product (-, ),
on which G acts orthogonally. If p is any G-invariant polynomial on V, we formally define

Ap(z) = /V ePW)=i@y) gy (x eV).

If V= H(n), G = U(n) and the G-action is given by X —— gXg~!, we get 4,(X).
In view of Kontsevich’s pioneering work, we refer to A,(X) as Airy functions/integrals.
These definitions can be generalized even further by replacing R by a local or finite field.

In this paper, we study these generalized Airy integrals for a specific finite dimen-
sional module for an arbitrary connected compact Lie group, namely the adjoint repre-
sentation. In sections 2 and 3 we develop their analytic theory, in particular obtaining
sufficient conditions for an Airy integral to be a function of moderate growth that ex-
tends to an entire function. In Section 4 we establish the principle that an Airy integral
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on the Lie algebra of a connected compact Lie group is an entire function of moderate
growth if the result is true for its restriction to a Cartan subalgebra. This principle is
used, in Section 5, to evaluate some of the Airy integrals on the Lie algebra of U(n). Our
formulae contain, as a special case, the formula obtained by Kontsevich in [K]. We hope
that these generalizations of the Kontsevich integrals will also have interesting moduli-
theoretic interpretations. Finally, in the Appendix, we give a brief exposition, which we
believe may be useful for people interested in working in this area, of Harish-Chandra’s
work on invariant differential operators and Fourier transforms on the Lie algebra of a
compact Lie group. We use [V] as a general reference on semisimple Lie algebras and Lie
groups. A significant part of the results of this paper forms the content of the thesis [F].

2. The basic definitions. Let V' be a real finite-dimensional euclidean space with
scalar product (-,-), and let S(V) be the Schwartz space of V' with its usual topology.
The topological dual S(V)’ of S(V) is the space of tempered distributions on V. A
function on V is said to be of polynomial growth if it is majorized by const(1 + ||v||)™ for
some m > 0, where || - || is some norm on V, and of moderate growth if it is smooth and
its derivatives (including itself) are of polynomial growth. If F' is a measurable function
V' — C of polynomial growth, the map

T f e /V F@)f@dv (f € S(V))

is a tempered distribution. If T is a tempered distribution and there is a measurable
function F' of polynomial growth such that T' = T, we identify T with F' and write T'(v)
for F(v); F is determined almost everywhere by T', everywhere if it is continuous.

Fourier transforms f —— f: F f are defined using the self-dual measures dox, do€
which are (27)~ 4(V) times da, d¢, where d refers to the standard Lebesgue measure
on V obtained by identifying V' with R™ via an orthonormal basis for V. Thus, for

fesv),
(FF)E) = Fe) = /V = f(@)dor (€€ V)

f@) = [ FN©eae @ev)
Given a tempered distribution T, its Fourier transform T = FT is defined by

(FT. f) = (T.f) € (T, J) = (T, Ff).

Given a real polynomial p on V, the function F = e’ is bounded and smooth, hence
Tr is a tempered distribution. We may therefore consider its Fourier transform Tr = e,

It is now natural to ask if T is a function.
Definition. A real polynomial p on V' has the Airy property if

1) there is a smooth function A, (necessarily unique) of moderate growth on V such
that P =Ty,

2) A, extends to an entire function on Vg, the complezification of V.
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In terms of €', this is equivalent to saying that
| @Enwan= [ A@i@da (fesw)).
This can be written out as
/ eip(y)doy/ f(x)e_i(y’m)dox = / Ap(z) f(z)dox
1% v v

which is a rigorous formulation of the formal relation
/ eip(y)—i(w,y)doy = Ay(z).
1%

The classical polynomial p(y) = y3/3 has the Airy property in this sense, as does the
matrix Airy function.

3. Sufficient conditions for a polynomial to have the Airy property. Our first
concern is to obtain sufficient conditions for a real polynomial p(y1,y2, ..., yn) on R™ to
have the Airy property. Note that if p is linear or depends only on a proper subset of
the variables 1,42, ..., Yn, the Airy integral is a distribution on R"™ that is supported
by a proper affine subspace, hence is not a function. If p is quadratic, its leading term
can be diagonalised so that e is a product of functions e*“/%s +id;y} , thus reducing the
problem to the one-dimensional case. The fact that cy + dy? has the Airy property when
d # 0 is verified by direct evaluation of suitable gaussian integrals. Therefore p has the
Airy property when p is of degree 2 and its leading term is a non-degenerate quadratic
form. We thus only consider polynomials of degree at least 3. When n = 1, any non-zero
polynomial of degree at least 3 has the Airy property. In higher dimensions, we must
assume some suitable invariance properties to establish the Airy property. Before proving
the higher-dimensional versions, we briefly discuss two examples in the one-dimensional
case: the classical example when p(y) = 32/3, and the example when p(y) = y*/4;
they require different treatments. The proof in the higher-dimensional case has a similar
structure to that of the one-dimensional case.

3.1. Case of polynomials on R. Here V = R, and p(y) is a real polynomial of degree
at least 3.

The classical case p(y) = ; Let £ = eiy3/3, which we view as a tempered
distribution. Then we have the differential equation £’ = iy?E, which becomes A" +
rA = 0 under the Fourier transform, where A = E. Any tempered solution of this
differential equation is a multiple of F; in fact, if S is such a solution, then S = @, where
a’ = iy?a, and so the distribution a is a classical smooth function and is a multiple of
A. The equation A” + A = 0 makes sense in the complex plane, is linear, and has
no singularities in the finite plane; hence A is entire. Note that the space of solutions
to A” + A = 0 is two-dimensional, but the tempered solutions form a one-dimensional

subspace.

To see that A is an entire function of moderate growth on R, we change the path
of integration in the formal definition of A to the path C} that goes from —oo + it to
oo + it, where t > 0. Let

A(t2) = § w(G2)dc = /_ BE + it 2)de
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where
V(¢ 2) = exp{(i/3)¢® —i2¢} ((,2€ C,(=E+in,z2=x+1iy).
Then

(¢, 2)| = exp{—Im ((1/3)¢* — 2¢) } = exp{—n&> + (1/3)n° + y& + =n}.

For fixed L > 0, it follows that ¢ and its derivatives with respect to z and n are majorized
on the path C; by
Kp(1+ [§)" exp{—t&* + LI¢[},

valid for |z| < L, for all £ € R, for all n with 0 < < L, and for a suitable integer n > 0.
Therefore the integral defining A(t, z) converges absolutely and uniformly for |z| < L
and defines a holomorphic function of z for any ¢ > 0; its derivatives with respect to z
and ¢ can be calculated by differentiating under the integral sign.

To prove that A does not depend on ¢, we differentiate with respect to ¢. Thus

0A(t,z) [ o(E+it) .. . [ OY(+it)
ot / ot df_l/ o€

— 00 — 00

d¢ =0,

since (€ + it) vanishes at £ = +00. So we write

e - [ T (e it 2)dc.

Then
T = [ ermreerinan (z0)

dz™ oo
To see that this derivative has polynomial growth for z on the real axis, we exploit the
fact that ¢ can be chosen to depend on x. Let t = 1/|x|. A simple calculation shows that
for x > 1, there are constants K and K’ such that

A

dz™

n+41
2

< K/ (1+|€))"e"Fde = K'z

It remains to show that A is the Airy function. We show that

wl“:

[ aws@ae= [~ ¢FFway e s®)):

— 00

Since A has been shown to have polynomial growth, it defines a tempered distribution,

so it is enough to show this for f € C°(R). Let f € C°((—a,a)), where a > 0. Then f
is defined over C, is entire, and is given by

Q) :/af(x)e’i@dz (¢ =& +in).

‘We have

~

IO < e™Ifh
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and the Paley-Wiener estimate
FOI < Cral+€)7 (r=0,0<n <),

where Ci., > 0 is a constant. For any ¢ > 0,

The integrand on the left is majorized by
Gl (a)le! e

(where Cy > 0 is a constant) which is integrable with respect to drd€ and so

[ A@i@n = [ S5 e v ine

— 00

Since this is true for any ¢ > 0, we take the limit, as ¢ tends to 0, under the integral
sign. To justify this, we cannot use the exponential majorant e_tgz, on which we have
relied so much, because t is now tending to 0. Instead we use the Paley-Wiener estimate
on f to estimate the integrand. Since, for 0 < ¢ < 1, the integrand on the right has the
majorant

Ca+e),
we can take the limit under the integral sign, giving

~

| @@= [~ o e

3
wlw

which is what we want.

The case p(y) = %. The above method fails when we work with % because the
main term in the majorant of the exponential is e_tga, which is not integrable on (—o0, 0).
In order to carry this argument forward, the path of integration must be changed so that
the exponent stays negative. We define

$(C2) = exp{(i/4)¢" —iz(} ((,z€C,¢=E+in,z = +iy).

The path of integration, Dy, is Im({) = —t for £ from —oo to & = —k for some k > 0,
then an arbitrary path from —k — it to h + it, where h > 0, and then the path Im(¢) = ¢
from £ = h to £ = co. The integral does not depend on the choice of h, k, or the auxiliary
path between —k — it to h + it. So, to simplify matters, we set h = k = 1 and take the
auxiliary path to be linear. Thus D, will be the path

x if x| < 1.

Here sgn(z) = z/|x|.



Define
At z) = A Y(C, 2)dC.

To establish convergence of the integral, we note the estimate
(& + isgn(€)t, 2)| < Kpe AV (+)

valid for [¢] > 1,]z] < L,0 <t < 1. Tt follows that if ¢; and t5 are fixed with 0 < #; <
ty < 1, then for any N > 0,

(& +isgn(€)t,2)| = O0(E[™N) (€] — o0) (%)
uniformly for ¢; <t <9

To prove that this integral does not depend on ¢, we note the relation
Dtl(_AaB) = Dt2(_AvB) +V_a+ Vg,

where Dy(—A, B) is the part of the path D; from —A to B and V_ 4, Vg are the suitably
oriented vertical segments connecting —A — it;, —A — ity and B + ity, B + it3. So the
difference between the integrals over the partial paths is at most the sums of absolute
values of the integrals over V_4 and Vg. These tend to 0 as A, B — oo because of the
uniform estimate (xx). The rest of the proof is essentially the same as the proof in the
case of degree 3.

The above arguments apply to the case of an arbitrary real polynomial of degree at
least three.

3.2. General case of polynomials on R" (n > 1). The discussion above can be carried
over to show that the results for y3/3 and y*/4 are true for any real polynomial p(y) of
degree at least 3. But more can be done. Recall that a real homogeneous polynomial is
elliptic if it vanishes only at the origin. We write S,, for the unit sphere of R™ and S;
for the subset of S,, where all the coordinates are non-negative.

Theorem 3.2.1. Let p be a real polynomial of degree m > 3 in n variables y1,ys2, - .., Yn,
and let py, denote its homogeneous component of degree m. Then p has the Airy property
in the following cases:



(1) If m is odd and there is a direction 7 € R™ such that 7-Vp,, is elliptic and
strictly positive on Sy,.

(2) If m is even, py, is elliptic and invariant under arbitrary sign changes of the
variables y;, and all the Opy,/dy;(1 < j < n) are non-negative on S, .

Moreover, for any integerr > 0, all derivatives of A, of orderr are O(|z|("+™)/(m=1))
as |x| — oo.

Remark. It is easy to see that p has the Airy property if and only if —p has the
Airy property. Indeed, if f — f* is the involution defined by f*(z) = f(—2)°™, then
A_p = Aj. So p has the Airy property if either p or —p satisfies the conditions of the
theorem. Tt is also easy to see that if we partition the set of variables (y) as (Y, Z) and
if p(y) = p1(Y) + p2(Z) for some polynomials p; and po, then p has the Airy property
if the p;(i = 1,2) have it; moreover, A, = A, ® Ap,. Thus >, c;y;" has the Airy
property for arbitrary non-zero choices of the constants ¢;. However no such trick seems
to be available to settle the case for y?y3. It is an interesting question whether the Airy
property is generic; we have not been able to answer it, though we do prove that the
property is valid on some non-empty open set (Corollary 3.2.4).

The next corollary shows that there are plenty of polynomials satisfying the hy-
potheses of the theorem.

Corollary 3.2.2. If m is even, m = 2k, let p,, = Z|a\:k cay?®, where the coefficients

Co are mon-negative and the coefficients of yjzk are strictly positive for 1 < j <mn.

If m is odd, m = 2k + 1, let p,, = Z\a|:2k+1 cay®, where all the coefficients c,, are
non-negative, and the coefficients of y?kﬂ are strictly positive for 1 < j <mn.
Then p = pm + q, where q is arbitrary and deg(q) < m, has the Airy property. In

particular, p = y" + ... + y" + q has the Airy property if deg(q) < m.

Proof. The conditions are verified trivially when m is even. When m is odd, take

T=(1,1,...,1). &

Corollary 3.2.3. Let p,, be as in Theorem 3.2.1. If q1,...,q, are homogeneous poly-
nomials of degree m, and q a polynomial of degree < m, then there exists € > 0 such
that

P =DPm+ Z Ciqi +q
1<i<r

has the Airy property for all ¢; € C with |¢;| < e for all i.
Remark. This follows from the proof of the theorem and is given in §3.4.

Corollary 3.2.4. The set of polynomials of degree N that have the Airy property contains
a non-empty open subset of the space of polynomials of degree at most N.

Proof. This follows immediately from Corollary 3.2.3.

3.2.3. Structure of the proof of Theorem 3.2.1. Since the proof has many technical
aspects, it may be worthwhile to sketch the main steps before we undertake the details.
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Step 1. Since e®©~i(&2) is not integrable on R, we push R into an open cycle!
in C™ and transfer the integration to that cycle. The nature of the cycle depends on the
parity of the degree of p. On this cycle, e?? has a super-gaussian majorant of the form
efcmmfl, for some constant ¢ > 0, where m is the degree of p. The first step is to define
these cycles and prove the majoration.

Step 2. We construct a one-parameter family of cycles D(t) (0 < ¢ < 1) such that
D(t) — R™ as t — 0+, with ¢ having a super-gaussian majorant on the cycles D(t).
We define

Alt, z) :f ePO=C¢2ge (>0, 2, € CM).
D(t)

We show that A(t, z) is entire in z. Then we prove that A(t, z) is independent of ¢ so
that it can be written as A(z).

Step 3. Here we prove that A(z) (x € R™) is of moderate growth. We estimate A(z)
and its derivatives by writing it as A(¢,2) and choosing t to depend on z; for instance,
for |z| > 1,t =1/|x|.

Step 4. By Step 3, A defines a tempered distribution on R™. We now prove that

this tempered distribution is e??. Since both distributions are tempered, it is sufficient
to prove that they agree for all f that are compactly supported, i.e., we prove that

Alt.a)fla)do = [ ™ (e)de,

R’Vl n

Since f has compact support, its Fourier transform fis entire and satisfies the Paley-
Wiener estimates. So we take the integration to C™ over the cycles D(t) and let t — 0+.
Since ¢ is tending to zero, the super-gaussian majorants can no longer be used; we instead
use the Paley-Wiener estimates on f to carry out the limit.

3.3. Proof of theorem when p is of odd degree. Let z =z +iy,( = £ +in € C™.

Since ‘ ‘ .
|61p(£+m)| — ¢~ Im p(£+m),

finding majorants for |e??| is the same as finding lower bounds for Im p.

Lemma 3.3.1 (Super-gaussian majorant). Let p be a real polynomial of odd degree
2k +1(k > 1) and pag+1 be its homogeneous component of degree 2k + 1. Suppose that
for some T € R™, 7-Npay11 is elliptic and strictly positive on S, (the unit sphere of R™).
Then there exist constants b,C > 0 such that for all t € (0,1) and for all £ € R™ with
€l =1,

Imp(€ +itr) > Ct(|€[** — bl¢[** ).

In particular, there exist constants D, K > 0 such that

|eP(EFitT) | < oDl

L The term cycle usually refers to a map of a compact manifold into C™; here we shall use the term
open cycle (or integration cycle) to refer to a map of R™ into C™. This is a generalisation of the usual

notion of a contour for the case n = 1.



uniformly for oll € € R™,0 <t < 1.

Proof. In this and the next subsection we use the Taylor expansion of a real polynomial

; |
fle+iny =3 U0 porg)

where « runs over multi-indices and the notation, imitating what happens in the case of
one variable, is standard. In particular, for real f and £, € R",

o f(€ i) = Y (~1)20el L g e)

(6%
|ajodd

Write p = pak+1 + ¢ where deg(q) < 2k. Then there exists a constant C such that
T Vp2p41(§) =2 C >0
on the unit sphere S,,, and as 7 - Vpar4+1 is homogeneous of degree 2k,
T Va1 (§) = ClE* (€€ RY).
Since deg(q) < 2k, there exists a > 0 such that uniformly for ¢ € (0,1), |£| > 1,
Im q(& + it7)| < tal]* 1.
Hence, for t € (0,1),]¢] > 1,
Imp(§ + it7) > Im pog1 (€ + itr) — tal¢** !

while

Im pop41(§ +itT) = t((T - V)p2k+1(§) + O(|§|2k_2)>-
Hence there is a constant b > 0 such that for ¢ € (0,1), |¢] > 1,

Imp(€ + itr) > Ct(|§|2k _ b|§|2k_1)_

The uniform estimate for |e??| follows immediately by a standard argument. <

We now prove Theorem 3.2.1 for p as above. Write
Vp(C, 2) = PO —C-2)

Then _ _
|Wp(€ + itr)| = e!TTTEY|PEFIT)| ().

We want to push the integration cycle from R™ (where the integral does not exist) to
the cycle R™ +4tT where the integral converges because of Lemma 3.3.1. We thus define
(Cy is defined at the beginning of §3.1)

A= f G dG = [ et

R
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From Lemma 3.3.1 and (xx) we see that for some constant K7 = K;(L) we have, uni-
formly for |z| < L,£ € R™,t € (0,1),

W (€ + itT, 2)| < Kye~ eI HLIe]

Therefore the integral defining A,, is absolutely convergent, uniformly when z is bounded,
and so defines an entire function of z. The derivatives of 1, with respect to z and ¢ have
similar majorants, except that there will be additional polynomial growth terms of the
form (1 + [¢])" that do not affect convergence. Hence the derivatives of A, can be
calculated by differentiating under the integral sign.

We now prove that the function A,(t, z) is independent of t; we show that

9]
&Ap(t, Z) =0.

Now

0 B OYp(& +itT,2) . O +itT, 2)
5Ap(t,z)—/n—p 3 df—/Rnl;nm—” 7, dg.

Since 1, vanishes at infinity,

Op(§ +itr,2) .
/ T g =

This completes the proof.
We thus write
Ap(2) = | (€ +itT, 2)dS.
R’n.

For the next step in the proof of the theorem we must show that A,(z) and all of its
derivatives have polynomial growth for z = 2 € R™. If we write 9") for 9}" .../ where

0; = 0/0z;j and (—i()" for (—i¢1)™ ... (—i(y)"™, then
0" Ay(x) = / (—iQ) (& + itT, 2)de.

Let |z| > 1 and t = 1/|z|. The exponential factor e/ in the bound for |e??| is now
e”*/1*l and so is bounded by el™l. Hence, by Lemma 3.3.1, with |r| =71 + 75 + ... + 7y,
there exists K such that

|(0) W (€ il 7 )] < K (1 [g]) e el
We now make the transformation & — ¢/2*|z|=1/2k¢ to get
00 Ay (o) < Kalal "1/ [ (1pfg])renlo ag
Rn

11



for some constant Ko, which shows that
0 Ay(x) = O(|a| ITHM/2) - (Ja] — o0).

This proves that A, is a function of moderate growth and so defines a tempered distri-
bution.

It remains to show that this tempered distribution is the Fourier transform of e?.
This is the same as showing that

[ A = [0 F)dy.

Since both sides define tempered distributions, it is sufficient to prove this equality for
functions f that are compactly supported. The idea is to work with A, (¢, z) and let
t — 0. Since ¢ becomes arbitrarily small in the proof, we cannot use the super-gaussian
majorants; we rely instead on the Paley-Wiener estimates for f, which are available since
f is compactly supported.

Assume that supp(f) C [—a, a]" for some o > 0. Then,
f©) = /f(a:)e*”fd;c = / Fl@)e " da.

R” [_a)a]n

Hence f is well-defined for all ¢ € C™ and entire. From Lemma 3.3.1 and (%) we have,
forany t >0, £ € R", x € [—a, ],

[ (€ + it )| < Koe
Hence f(x),(€ + itT, x) is integrable with respect to dxd{. So, for any t > 0,
P

[a@iwis= [ 400w

R® [—a,a]™

_ / < R/ 1/)p(§+it7-,x)d§> f(x)dz

[_O‘>O‘]n

- / ePEHIT) F(E 4 i) de

R

by Fubini’s theorem. We wish to take the limit ¢ — 0. Since ¢ is tending to 0 from above,
we may assume that 0 < ¢ < 1. It follows from Lemma 3.3.1 that

|eip(5+it7')| < Ks.
By the Paley-Wiener estimate, for any » > 1 and uniformly for 0 < ¢ <1,
(€ +itr)] < Cr(1+ €))7
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Therefore, ] PN
|ePEFT) (e titr)| < Ka(1+ (€))7

This estimate justifies taking the limit under the integral sign. The theorem is thus fully
proved when the degree of p is odd and p,, satisfies the appropriate condition.

3.4. Proof of theorem when p is of even degree. Here the integration cycles are
more complicated than in the odd case, and so the derivation of the lower bounds for
Im p becomes more involved. Let

TH={0=(t1,...,tn) €R" | 0 < t; <1 for all j}
and

max(f) = maxt;, min(f) = mint,;.
J J

Let
a(a:)_{ign(x) iﬂiiii a(€)0 = (a(&)tr, -, a(En)tn).

For t1 > 0,...,t, >0, let Dy : R® — C" be the map defined by
Dy(§) = &+ ia(€)8.

Then Dy is an open cycle in C", written Dy = Dy, X ... x Dy, . On this cycle,

dG; = (14 itx(&)t;) d&; = b(g;,t) &,

where x(§) is the characteristic function of (—1,1) and |b(;, )| < 2; moreover €] < (] <
1€ +n.

Suppose that f is an entire function on C" such that for all N > 0,

FQ)=0(¢™™) = 0(el™™) (N >mn, ¢ € Dy, [¢| = ) (1)

for each 6. The integral

Q)¢ = / FDoE)BEL 1) - b(Ens t)de
Dy R

is then absolutely convergent.

Lemma 3.4.1. Let f satisfy (1T) uniformly when 0 varies over compact subsets of T.
Then

(G, Ga)dCr - dGp
Dy

does not depend on 6.

Proof. Write I(t1,t2,...,t,) for the integral. Let (s1,...,s,) € TT. We must prove
that I(t1,...,t,) = I(s1,...,8,). By the absolute convergence we can evaluate these as
repeated integrals. If we fix t1,...,t,_1, then {(¢t1,...,tp_1,t) | t € [sn,tn]} CTT is a
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compact set, and so, f as a function of ¢, (when the other (; are fixed) is O(|¢,|™")

uniformly for ¢ € [s,,t,]. Hence we can conclude as in §3.1 that

Q)G = ]{) F(O)dCo.

Dy,

We then do the same by integrating with respect to ¢,,—1 to change ¢,,_1 to s,—_1, and so

on. {

Let N = {1,2,...,n}. For any subset I of N, let &; = (£)ier. We can identify R™
with R x RINVI via the map & — (&7, &nv\r)- The following lemma is fundamental in
deriving lower bounds for Im(p(¢ + ia(£)#) in Lemma 3.4.3 below.

Lemma 3.4.2. Let por be a homogeneous real polynomial of degree 2k such that p > 0
and all the derivatives Ojpax, = Opax /O, (j = 1,2,...,n) are non-negative on S;". Then
there exist v, c > 0 with the following property. If I C N and I # N, then

Y Opa(Eréna) Z Pt (& = 0,0¢ > L& <)

JEN\I

Proof. It is sufficient to prove the estimate for each fixed I. Let S(§) := S(&r,6n1) =
ZjeN\I 0jp2r (&1, Envr)- We claim that S(0,&ny ;) > 0 forall (0,&x7) € S,f. If this is not
the case, then all the partial derivatives involved, being > 0, will be 0 at some (0, 5?\,\1),
so that, by Euler’s theorem on homogeneous functions, pgk(O,f?\,\ ;) = 0, contradicting
the assumption on pgi. Therefore there exists ¢ > 0 such that S(0,n) > 2¢ > 0 for
(0,m) € S;f, and, by continuity, for some v > 0, S(&7,&n\7) > ¢ for all £(&; > 0) with

no

€l <7, 1=y <€l < T+7. I [&] <y and [€] = 1, we have [Ey\7]| € [1—7,1+7],
so that S(£r,6n\7) = ¢ > 0 when & > 0,[§7] < v and [{] = 1. If now [£7] < v, (€| > 1,

and & = [¢|7'[¢, then [¢'| <y and |¢'| = 1, so that S(&r,.&nvr) = [ S(EL &y ) =
cleF o
Lemma 3.4.3. (Super-gaussian majorant). Let p be a real polynomial of even degree

2k (k > 1) and pag be the homogeneous component of p of degree 2k. Suppose that

1. poy, s elliptic and positive.
2. All the derivatives O;pai, (j = 1,2,...,n) are non-negative on S, .

8. pog 1s tnvariant under all sign changes.

Then there exist constants A > 0 and d > 0 such that for all 6 € T, and for all £ € R"
with [§] > 1,

Im p(€ + ia(€)6) > d(min()€]2* 1 — Amax(8)|€]22).

Proof. As in the odd case, for any real polynomial f, we have

o f(€+in) = Y (~1)20el L g e)

al
|ajodd
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Then, if r is the degree of f,
T f (€ + ia(§)0)| < Amax(6)[¢]"~

and, for some constant A > 0,

Im f (& + ia(€) Z a(€)t;0; (&) — Amax(0)|¢]" 3
J

for || > 1,0 € T™. Write p = por + ¢ where deg(q) < 2k — 1.

We first derive the lower bound for Im poy (€ + ia(€)d). Assume first that all the
& >0, |¢] > 1. Then,

I pai (€ +ia(§)0) 2 3 a(6))t95pan(E) — Amax(0) €.

Let ¢ > 0,7 > 0 be as in Lemma 3.4.2; we may assume v < 1. If [ is the set of all j such
that & < «y/n, then I is a proper subset of N (otherwise {| < < 1), and |£7] < 7, and

SO
> a(€)t0ipak(€) > (v/n)min(0) > 9par(€) = cly/n)|E[* 1

J JENN\I

Thus, with d = ¢(y/n),
Tm pak (€ + ia(§)6) > dmin(0)[¢* 71 — Amax(9)|¢|*

for || > 1,0 € T. This is the estimate we want but with all £ > 0.

If ¢; are of variable signs, let &;,,...&;, be all those that are strictly negative. Then

Impok (€ +ia(€)0) = Impok(. .., &, +ia(&, )t ,-- )
= Impgk(. cey —gju + ia(—fju)tju, .. )

where all the real parts are now non-negative and so can be estimated by the preceding
result. Hence

Im poy (€ + ia(€)0) > dmin(0)[¢[** " — Amax(9) (¢~
uniformly for [£] > 1,0 € Tt. Now p = por + ¢ where deg(q) < 2k — 1, so that
[lm g(€ +ia(§)0)| < Amax(6)[¢[*" 2.
Thus we finally have the asserted uniform lower bound for Im p(¢ + ia(£)6). &

Corollary 3.4.4. If Q C T is a compact set, there are constants K > 0 and D > 0
such that for all € € R, 0 € Q,0< 0 <1,

|eip(5+i<m(5)9)| < Ke—Dolé

|2k71
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Proof. We note that there are constants b > 0 and b > 0 such that min(6) > b’ > 0 and
max(f) < bmin(f) when § € w. Then, for 0 < 0 <1 and 0 € w, we have min(cf) > ob’
and max (o) < bo min(#), so that for some Dy > 0,

Imp(¢ + ia(§)od) > Dyol¢**

for |¢| > C. The estimate for |e??| is now deduced, in a standard manner, from the lower
bound for Imp. <

Let 1, be defined as before,
Vp(C,2) = et (P(Q)—¢2)
Then o
[y (€ 4 ia(€)0)| < Kelllzlg—clsl™* +L1g|

uniformly for £ € R",0 € w, |z| < L. We now define
4,02 = § 6,(C e = [ buDale), (e, 0)de
Do R"

From the above estimate for v, we see that the integral converges absolutely and uni-
formly for z bounded, hence defines an entire function on C”. By Lemma 3.4.1 and
Corollary 3.4.4, it is independent of . So we can write

Ap(z) = Ap(0, 2) = - Yp(Da(§), 2)b(§, 0)d¢,
where

b(&,0) =b(&1,t1) ... b(&n, tn).

The proof of the moderate growth of A,(x) is now exactly as in the odd case. The
derivatives of A, with respect to z are given by differentiating under the integral sign,
and we choose 6 depending on x by ¢} = |z|~! for |x| > 1. Then we have

[

10T, (€ + ia(€)8°, )| < Ki(1+ |¢])/le—cl

We now make the transformation & — ¢!/2+~1 |x|—1/2k—1§ to get
00 A, ()] < K1|$|(|T\+n)/2kfl/ (14 e 1e™ " ge.
R”

giving
0" Ay (x) = O(J| "HME) - (J2] — o).

This proves that A, is a function of moderate growth and so defines a tempered distri-
bution.

The proof that A, = e needs no change from the odd case. We have for compactly
supported f and all 0 < 0 < 1,

[ Ao = [ emEne©m fie s ia(e)o0)b(e, o)
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Here 6 € T is fixed. We now let o — 0+. Since b({, 00) remains bounded when o — 0+
and tends to 1, we get

| Aas@is = [ e Ofede o

Proof of Corollary 3.3.3. The lower bound for Im p,, is of the form c|¢|™~! for some
¢ > 0. So, if the |¢;| are sufficiently small, a similar lower bound will hold for p (with ¢/2
in place of ¢). The rest of the proof remains unchanged. ¢

4. Reduction of Airy property to a Cartan subalgebra. In this section we study
Airy polynomials on the Lie algebra g of a connected compact Lie group G. The main
goal is to prove the theorem that if h is a Cartan subalgebra of g, then a G-invariant
polynomial p on g has the Airy property if py, its restriction to b, has the Airy property
on h. This is quite remarkable and depends on the marvellous way in which analysis on
b is related to analysis on g; the relationship is a consequence of Harish-Chandra’s deep
work [HC] on differential operators and Fourier transforms on semisimple Lie algebras.
Since this work is not easy to read, we summarize it briefly in the appendix, giving
enough details so that the reader can refer to the original work with little difficulty.

Preliminaries. Let G be a connected compact Lie group, g its Lie algebra, and b
a Cartan subalgebra of g. Fix a positive system of roots of (g,h), and write a > 0 to
mean that « is a member of the positive system. Let W be the Weyl group of (g, ). We
work with a G-invariant positive-definite scalar product on g. Define

W:HOA

Then 7 is a polynomial function on h that is skew-symmetric with respect to W. Given a
function f on g, let fy denote its restriction to . We need two propositions: Proposition
4.1, concerning division by m, and Proposition 4.4, relating the behavior of invariant
functions on g to that of their restrictions to b.

Proposition 4.1. Let f be a smooth function on § that is skew-symmetric with respect
to W. Then f = mg, where g is a smooth W -invariant function. Morever, if f is of
moderate growth, then g is of moderate growth.

Proof. We begin with a lemma on division by a linear function.

Lemma 4.2. Let f be a smooth function on R™ that vanishes on the hyperplane z; = 0.
Then there is a unique smooth function g such that f = x1g9. Moreover, if f is of
moderate growth, then g is of moderate growth.

Proof. Since g is uniquely defined on the dense open set where x; # 0, the uniqueness
of g is clear. For the existence, since f(0,x2,...,2,) = 0, we have, writing 9; = 9/0x1,

1
d
f(xl,:vz,...,xn):/ Ef(t:vl,;vg,...,xn)dt
0
1
:xl/ 81f(t$1,$2,...,xn)dt
0
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so that .
9(x1, T2, ..., xy) = / O f(txy, xa,. .., x,)dt.
0

Differentiating this formula shows that if f is of moderate growth, then the same is true
for g. &

Lemma 4.3. Let Ly, Lo,..., L, be real linear functions on a real finite-dimensional
vector space V, mno two of which are proportional. Suppose that f is a smooth function
on V that vanishes on the hyperplanes L; = 0,4 = 1,2,...,q. Then there is a unique
smooth function g such that f = L1Ly ... Lyg; moreover, if f is of moderate growth, then
g is of moderate growth.

Proof. When ¢ = 1, the result is just Lemma 4.2, since we can take a basis such
that V ~ R™ and L ~ z;. We argue by induction on g. Suppose that we can write
f=LiLs...L.g, for r < g with g, smooth. Since the L; are mutually non-proportional,
the set of points on the hyperplane L,; = 0 where Ly, Lo, ..., L, are all non-zero is
a dense open set in this hyperplane, and g, must vanish on it. Hence g, vanishes on
the whole hyperplane L,;; = 0. So we can write g, = L,41¢,+1 for a unique smooth
function g,41, showing that f = L1La... Lyy19r41. If f has moderate growth, then we
know, by the inductive hypothesis, that g, has moderate growth; hence, by Lemma 4.2,
gr+1 has moderate growth. This completes the inductive argument.

We can now complete the proof of Proposition 4.1. Since f is skew-symmetric on b
with respect to W, f must vanish on the hyperplane where a root « vanishes; indeed, if
S is the reflection in that root hyperplane, we have f = —s,f, and so f = —f on the
hyperplane, which shows that f = 0 there. No two roots are proportional; hence we are
in the situation treated in Lemma 4.3. So we can write f = mg, where g is smooth and
unique, with g of moderate growth if f is of moderate growth. Away from where 7 is 0,
the skew-symmetry of both f and 7 implies that g is W-invariant; hence g is W-invariant

onbh. &

Proposition 4.4. Suppose that f is a smooth G-invariant function on g. Then f is of
moderate growth on g if and only if fy is of moderate growth on b.

Proof. We begin with a simple observation: if F' is a smooth G-invariant function on g,
and if Fy has polynomial growth on b, then F' has polynomial growth on g. To see this,
note that we can find a constant C' and an integer r > 0 such that |F(H)| < C(1+||H]|)"
for all H € h. If X € g we can find x € G such that X* = H € h. Then

[F(X)| = [F(H)| < CA+[[H]])" = CA+[[X]])"

This proves the observation.

Let us now consider the framework of Proposition 4.4. The non-trivial part of the
theorem is to show that if fy has moderate growth on b, then f has moderate growth
on g, since we must consider the derivatives transversal to h. Our proof relies on the
theorem of G. Schwarz [S] asserting that any G-invariant C°°-function f on g can be
written

f = F(p17p25' .. apl)v
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where the p; are real generators of the ring of invariant polynomials on g (here £ = dim(}))
and F is C°. Let

P X — (p1(X),p2(X),...,pe(X))

be the map of g into R?. It is easily seen from examples that the image need not be dense
in R?, unlike in the complex case, so F is not uniquely determined. Given any function
g on RY, we write g™ for the pullback gop. Certainly F™ is uniquely determined; in fact
it is f itself.

We begin with a simple chain rule formula for repeated differentiation of composite
maps. Let (z;)1<i<m be real variables and

u(z) = v(q(z), g2(x), ..., qr(x)),

where u, v, g; are smooth functions. We indicate derivatives by successive subscripts so
that
0 0

1t 6,@1'7‘ 6:51-1

Let
q:x— (q1(z),q2(x), ..., qr(z)).

Then the formula that we need is the following:

WUiyig.. ip = E {'Ujljg...jr o Q} Qirjy -+ - Qiyj,
J1jz.-gr

+ E {Vp1.pe 04} Wpyps..p,
P1,P2,.--pt, t<T

where wp, p,.. p, are elements in the algebra generated by the derivatives of the ¢;. When
r = 1, this is the standard chain rule

ui= Y {vjoq} g

1<j<k

The general rule is proved easily by induction on r.

We return to the context of g,h and write
f=F(p1,p2,--,pe).
The key is the following lemma.
Lemma 4.5. Ifti,ts,...ty are the coordinates on RY, then
Fijiy.ip0p
1s of moderate growth on b for all i1is ... 10,.

Proof. Let y1,y2,...y¢ be the coordinates on h. We need the classical result (see the
Appendix) that

det(pi; (y)) = =(y),
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where y is the point of b with coordinates (y;) and
r=T]a

where the product runs through all the positive roots. We use induction on 7.

Let 7 = 0. Then f(y) = F(p(y)) and so is the restriction to h of the given invariant
function on g. It is of moderate growth by assumption. So F o p is of moderate growth
in y.

Now let » be > 1 and assume that the result is proved when the number of dif-
ferentiations is < r. We use the general version of the chain rule proved above and
obtain

fivizin = > AFjijacje ©P} Pirjs - Pinis + Biriai,

Jijz.-Jr

where the terms B;,;,. ;. are sums of terms of the form

r

{Fplpz---pt op} Wpips...ps

with ¢t < r and the wp, p,..p, are polynomials. So B;,;,. ;. has moderate growth in y by
the induction hypothesis. We now write this as

E {Fj jo...jr ©D} Pirjy - - Dirj, = firia.in — Bivia...iy
Jijge---Jr

and invert this as a system of linear equations for the F}, ;,. ;. op. Since
det(pi;) =7
it follows that
7" Fjijy..j, 0P = Z Qjrjo..jrivio..ir(firio...in — Biyia..i.)
where the @’s are polynomials. Thus
7" Fjjy. . 0P
is of moderate growth in y, hence, by our previous result,
Fjija.jrop

is of moderate growth. The induction step is completed and this finishes the proof of the
lemma. <

Completion of the proof of Proposition 4.4. Let y;,z; be coordinates on g. We
write © = (y, 2) = (Tk)1<k<m. Since

Fjlj2---j7‘ op
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are of moderate growth in y, they are trivially of polynomial growth on h and so the
corresponding invariant functions on g are of polynomial growth on g. By the chain
rule formula, if we differentiate repeatedly with respect to the x variables, then, with k;
varying from 1 to m, we have

Frakake = O AFjija. g © PYQhikar by i ios

where the @’s are polynomials. The polynomial growth property of the left side is
immediate. <>

There is an alternative proof that does not use Schwarz’s theorem, instead relying
only on Harish-Chandra’s work.

Lemma 4.6. If D is a G-invariant constant coefficient differential operator on g, then
Df has polynomial growth on g.

Proof. We use Harish-Chandra’s theory (see the Appendix). We can view D as an
element of the symmetric algebra S(g) invariant under G. We write Dy, for the restriction
of D to h, namely the unique element in S(h) such that D = Dy modulo the ideal in
S(g) generated by the orthogonal complement h* of b with respect to the Killing form.
Then

m(H)(Df)(H) = (Dy(rfy))(H) (H €Bb).

Since fy, has moderate growth on b, the same is true of Dy (7 fy), so that w(Df)y is of
moderate growth on h. By Lemma 4.3, we conclude that (Df)y is of moderate growth
on b, hence certainly of polynomial growth on h. Since D f is G-invariant, it is clear that
Df is of polynomial growth on g. <

Lemma 4.7. Let A be the Laplacian on g with respect to an orthonormal basis of g.
Then A" f has polynomial growth on g for any integer r > 0.

Proof. This is immediate from Lemma 4.6 since A is G-invariant.
Proposition 4.4 now follows at once from Proposition 1 of the Appendix.

To prove the restriction principle we need a lemma.

Lemma 4.8. If g is an entire function on hc that is skew-symmetric with respect to
W, then there is a W-invariant entire function f on bc such that g = nf. If f is a
W -invariant entire function on bc, then there is a unique G-invariant entire function F
on gc such that Flyg = f

Proof. Here the suffixes denote complexifications. The proof of the first assertion
imitates similar ones in Lemmas 4.2 and 4.3. If u is entire on C™ and vanishes on z; = 0,
its power series expansion cannot contain any term where z; does not appear; so u = 210,
where v is entire. By a change of coordinates we can replace z; by any non-zero linear
function on C™. Suppose that L1, ..., L, are linear functions on C", no two of which are
proportional, and that w is an entire function on C™ that vanishes on the hyperplanes
L; =0,1<1i<r. Weclaim that there is an entire function v such that w = L1Ls ... L,v;
if v exists, it is unique, since it is unique on the dense open set where none of the L;
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vanish. We prove the claim by induction on r. The argument is the same as that in
Lemma 4.3.

For the second part, let « be a root and s, be the corresponding Weyl reflection.
Since sog = —g, for each root «, g vanishes on the hyperplane where a = 0; hence, by
the preceding remarks, we can write g = wf, where f is entire. The dense open set where
no root vanishes is W-invariant, and both g and 7 are skew-symmetric with respect to
W on it, so f is W-invariant on it, hence on hc. This proves the first statement.

For the second, write f = 3" - pn, where p,, is a homogeneous polynomial of degree
n. Clearly the p, are W-invariant; therefore, there are unique homogeneous G-invariant
polynomials P, on gc such that P, restricts to p, on hc. Since f is entire, for any
C > 0, there is a constant K = K¢ > 0 such that the coefficients of the monomials in
the power series expansion of f (in a set of linear coordinates on h¢) satisfy

|c”1,~~.ng| < KO (nit.ne)
Hence, for any d > 0, we have an estimate, valid for H € hc with ||H|| < d,
|pn(H)| < ch—ndnn€—17

for all n > 0. This gives
||Po(X)|] < K1C7"d™n* 1,

for all n > 0 and X € g¢ with || X|| < d. Since C is arbitrary, we may choose C' > 2d.
This shows that the series ) P, converges uniformly on compact subsets of gc; hence
>, Pn = F is entire and G-invariant, and F restricts to f on hc.

We are now ready to state and prove the restriction principle.

Theorem 4.9. Let p be a real G-invariant polynomial on g. Then p has the Airy property
on g if the restriction py of p to b has the Airy property on b.

Theorem 4.10. Let A, and Ay, be the Airy functions associated to p and py by Theorem
4.9. Then m='9(n)Ap, extends to an entire function on hc and

These two theorems are proved together.

Proof. We note first that A, is W-invariant, hence d()A,, is skew-symmetric with
respect to W, and 7w '9(m)A,, extends to an entire function, say By, by Lemma 4.8.
Then 7By = 0(m)Ap, is of moderate growth on h and so, by Proposition 4.1, By is of
moderate growth on . Let B be the G-invariant entire function on g that restricts to
By on he. By Proposition 4.4, B is of moderate growth on g.

For f € S(g),
or(H) :W(H)/Gf(u_lHu)du (H €h).
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Then, using the Weyl integration formula and the Harish-Chandra Fourier transform
formula (see Appendix), we have (using self-dual measures)

<ez'?<?>, f(Y)> = / PV f(Y)dyY
g

g

cw(9) /h D) g (H)m(H)do H

i"ew (g) /h ) g7 (H)m(H)do H

= i"ew(g) < ™), g (H)m(H) >

= (~i)"i"ew(g) < €D 8<w>/¢7<H> >y

— (—1)ew(g) < P, o(m)py (H) >
1y ew(e) / Ay, (H)O(m) by (H)doH

/a H))é 7 (H)do

1
— ewl(o) /h 7 0 Ay, (H)) () () H
- / BY)f(Y)doY

g

= (B(Y), f(Y))q

Note that we do not need the exact integration formula proved in the Appendix, but just
the fact that it is valid with a non-zero constant ¢y (g). By the remark at the beginning
of the proof, B exists, is entire on gc, and is of moderate growth on g. But then p has
the Airy property, A, = B, and 7A,|y = 0(7)A,, , as required.

5. Explicit formulas. We apply the results of the previous chapters to obtain an
explicit formula for A, for specific invariant polynomials on Lie(G), where G = U(n).

In this case, g = (—1)/?2H(n), where H(n) is the space of n x n hermitian matrices.
We identify g with H(n) via the map X + (—1)/2X that takes the adjoint action to the
usual action of U(n) on H(n) : u, X — uXu~'. Since the theory depends only on the
G-module that is being considered, it does not matter whether we work with g or H(n).
On H(n) we take
p(X) =tr(X™) (X € H(n)).
The scalar product on H(n) is (X,Y) = tr(XY).

Our results in the preceding section lead to the following.

Ay(aiagn.) - TLn = ) = [0 =90 (An(m) - Anton) ).

k>L k>¢

where A,, is the one-dimensional Airy function for the polynomial y™
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Lemma. If A is a commutative algebra with unit and ap € A, 1 < k < n, then

det(al ") = [ (ar — ar).

k>¢

Proof. This is the classical Vandermonde determinant. <»

Using the lemma, we can replace [[,-,(9x — 0¢) by det(9/™"). Expanding this determi-
nant, we obtain

Ap(diag(yr, - yn)) - [T —w1) = det(AZV (1)
k>¢

Except for the normalization constant, this is Kontsevich’s formula; he uses standard
Lebesgue measures whereas we use self-dual measures. To obtain his formula, we proceed
as follows.

Let A, be the Airy function defined with respect to standard Lebesgue measure dx.
By definition of the Airy property we have

/Af,(x)f(:v)d:v = //ei”(y)_i(w’y)f(:zc)al:zcdy7

and
[ A@t(@dos = [ [[er-e fa)agzdoy.
Hence,
/ A () f(@)de = (2m)" / / P =) £ (2) dyadoy
= 20" [ 4y(a) (@) doz
~ [(Cry* 2 a @) 1@ de
Therefore,
Al = (2m)" /2 4,
Similarly,
Ab = (2m)" 2 A, .
Thus
wAbly = (2m)" " D/29(m) A
Therefore,

T = o)A, = @m)" D72 det(AG 1 (1)),
k>0

This is precisely the formula that Kontsevich obtained in [K] for m = 3.

6. Appendix. Invariant differential operators and Fourier transforms on the
Lie algebra of a compact Lie group (after Harish-Chandra). Harish-Chandra’s
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work [HC] is a deep study of invariant differential operators and integrals on semisimple
Lie algebras. In this appendix, we only examine the case when the Lie group is compact;
it need not be semisimple (i.e. U(N)).

Structure. Let G be a connected compact Lie group with Lie algebra g. If b is a
Cartan subalgebra (CSA), then any element of g can be moved by G to an element of
h. The centralizer of h in G is a maximal torus T of G and is the connected Lie group
defined by b.

The action of the group G on g gives rise to an action on the algebra P(g) of
polynomials on g. Let I(g) = P(g)¢ be the subalgebra of G-invariant elements of P(g).
If b is a CSA of g, the restriction map p — py is an isomorphism of I with the algebra
I(h) = P(h)" of all polynomials on b that are invariant under the Weyl group W; this is
a famous theorem of Chevalley. The algebra I(g) has homogeneous generators p1, ..., ps
which freely generate it, £ being the dimension of §. They are not uniquely determined,
but their degrees are. It is a well-known result that, with respect to linear coordinates

(yi) on b, and writing ¢; = (pi )y,

6(CI17-~7W)
a(ylu"'ayf)

= cm,
where ¢ is a non-zero constant and 7 is the product of roots in a positive system. This
can be seen as follows. If J denotes the Jacobian, then J is a homogeneous polynomial
and

deg(J) = Z (deg(p;) — 1) = number of reflexions in W = deg()

1<i<e

(see [V], p. 385). Moreover J # 0 since the p; are algebraically independent. On the
other hand, we can interpret J(H) (H € h) as the determinant of the tangent map dfy
where

f:o—RL f(H) = (pi(H),...p(H)).

If s is in the Weyl group, then f = f os; hence dfy = dfsy o dsg, which shows that
J(H) = J(sH)det(s). In other words, J is skew-symmetric, hence J is divisible by 7; as
deg(J) = deg(m), we see that J = cr for some non-zero constant c.

Polynomial differential operators on a real euclidean space. Let V be a real
finite-dimensional euclidean space with scalar product ( - ). Write P(V) for the algebra
of complex polynomials on V and S(V) for the complex symmetric algebra over V. Then
S(V) acts as the algebra of constant coefficient differential operators on functions on V:
if we write d(v) for the directional derivative along v € V', then, for vi,...,v, € V,
O(v1...v,) = O(v1)...0(vy). The scalar product ( - ) gives a natural isomorphism
V ~ V* that extends to an isomorphism P(V) ~ S(V). Given p € V, we write 9(p)
for the corresponding element of S(V') and view it as a differential operator on V. This
gives a bilinear form on P(V') defined by

(p,q) = (9(p)q)(0).

If P, (V) is the subspace of elements of degree m in P(V'), then P, (V) L P, (V). If (z;)
are coordinates on V relative to an orthonormal basis of V', then d(z;) = 9/dz; and

(2 ke et ety =Rl k(R ) O (K, ).

n n
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In particular, ( - ) is a non-degenerate positive-definite scalar product on the subspace
of real polynomials on V.

We write dV or dz for the standard Lebesgue measure on V' and dyV or dyzx for the
self-dual measure, so that doV = (27)~"/2dV, where n = dim(V). Fourier transforms
are defined with respect to doV: for f € S(V), the Schwartz space of V, the Fourier
transform is an isomorphsim with itself defined by

f) = [ e s@ior, 1w = [ T
v v
For any polynomial p on V and f € S(V),

pf=0p™)f  p~(x) = pliz).

Gaussian measures are very useful for computing the constants involved in many formu-
lae. For g(v) = e~ (/@) e have g(y) = g(y) = e~ /D). Moreover [, g(v)dov = 1.

Majoration of derivatives by powers of a Laplacian. In classical harmonic
analysis there is a principle that all derivatives can be majorized by powers of a Lapla-
cian. This is due to the fact that any polynomial is majorized at infinity by an elliptic
polynomial of the same degree. Let A = 82 +032 + ...+ 02 be the Laplacian, 9; = §/0x;.
For any multi-index o = (aq, ..., an), we write 9% = 97" ...09", la| = a1 + ... + an,
and z® = 27" ... %",

The idea of the majoration is very simple. We write f as (1—A)~"(1—A)" f and use the
fact that (1 —A)~" is a convolution operator by a function ¢, with very good properties.
The equation f = ¢, * (1 — A)" f can then be differentiated to give

0%f=0%, x (L =A)"f

when |a| < ¢. The polynomial growth for 9% f follows from this equation and the decay
properties of 0%¢,..

Let 7 be a fixed integer with 2r > n so that (1+4|z|?)™" € L' (dz). Moreover we shall
always write £ = [2r — n — 1], the largest integer < 2r —n. We want to invert (1 — A)".
Going over to Fourier transforms, (1 — A)" becomes multiplication by (1 + [£]?)", and so
its inverse is multiplication by (1 + [£]?)™"; hence (1 — A)™" will be ¢,*. We define ¢,
as the Fourier transform of (1 + [£]?)™":

e—i;ﬂ»f

b () = Pr(—2) = /Wd@

The symmetry under x — —x is seen by changing the integration variable from £ to —€.
Then ¢, is of Class C*, and for any a with |a| </,

@00@) = [ e (ol <0,

In particular 9%¢, is rapidly decreasing as all the derivatives of (—i&)*(1 + ||?)~" are
O((1 4 |£]?)~@7=9). The operator (1 — A)" is then a linear topological isomorphism of
S, and its inverse is ¢,*. Then for any f € § and for any « with |a| < ¢,

0% ) (@) = (0%, x (1 = A)"f)(z) (xR |a] < ).
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This leads easily to the following proposition.

Proposition 1. Suppose that f on that R™ is smooth and A* f is of polynomial growth
for 0 < s < r, where r is an integer > n/2. Let { = [2r — n — 1], the largest integer
< 2r—mn. Then f and its partial derivatives 0% f are of polynomial growth for all o with
|a] < €. In particular, if A®f is of polynomial growth for all s =0,1,2,..., then f is of
moderate growth.

The case V = g. We are interested in the case V = g, where ( - ) is a G-invariant
scalar product on g. For instance, for G = U(N), we take g = (—1)Y/?H(N), and
(X,Y) = —tr(XY). Choose a Cartan subalgebra b of g. It is known that each element
of g can be moved inside h by an element of G. Choose a positive system of roots and

define
r=T] o

Then 7 is a polynomial on g. Since each root is pure imaginary on b, "7 is real on §
and hence (i"7,i"w) = (=1)" (7, 7) > 0. 7 is skew-symmetric with respect to W.

The following lemma is needed to evaluate the derivatives of gaussian functions.
Lemma 2. Let E(H) = e~ (/2UH) - Thep

() O(m)E = (-1)'7E
(b) (9(m)*E)(0) = (=1)"(m, )

—~

(¢) mE = (—1i)"7nE.

Proof. (a) If a is a root and H, is its image under the isomorphism h* ~ b induced by
(-), then
(0(Ho)E)(H) = —a(H)E(H)  (H €).

Hence, by repeated application, we see that
ImE = (-1)"(7 + q)E,
where ¢ is a polynomial of degree < deg(m) = r. Since F is invariant and 9(m) is skew-

symmetric with respect to the Weyl group W, 9(x)FE, hence 7 + ¢, is skew-symmetric.
But every skew-symmetric polynomial is divisible by 7 and so ¢ = 0.

(b) By differentiating (a) we see that
A(m)’E = (—=1)"9(r)(n).E + F,
where F' is a sum of terms in each of which some root is present. Hence

(O(m)*E)(0) = (=1)"(m)(m) = (=1)" (m, ).

(c) We have



Theorem 3 (Weyl-Harish-Chandra integration formula). For all f € S(g),

/f )doX = () /(/fodx) H)%doH,

where do denotes self-dual measure, H* = Ad(x)(H), and the measure dx is normalised

by dezzr =1.

Proof. If i’ is the subset of h where no root vanishes, then the map ¢ : z, H — H*
induces a map of G/T x b’ into g. The complement of the range of ¢ is a set of measure 0
in g, while v is a covering map that has bijective differential. It is a standard computation
that the determinant of dv is |w(H)|*> = (—1)"w(H)?. Hence, there is a constant ¢ > 0
such that the integration formula is valid with (—1)"c as the constant in front of the right
side. The gaussian function f(X) = e~ (/2(XX) s used to evaluate c¢. Then

1= (—1)Tc/h7r(H)2E(H)dOH
Since m2E = A(r~)2E = (—1)"9(r)2E, it follows that
/h 72 BdoH == 72B(0) = (—1)"(3(x)2E)(0) = (r, m),

so that (—=1)"c = (m,m)~ L. &

Radial components. An element of g is reqular if it is conjugate to an element of
b’, the subset of h where no root vanishes; we write g’ for the dense open set of regular
points of g. We have observed that the map v : (x, H) — H? is a covering map from
G/T x b’ onto g'. Since di is bijective, it follows that given any invariant differential
operator D on g’ there is a unique differential operator ¢'(D) on b’ such that for all
smooth invariant functions f on g (it is even enough to take just invariant polynomials),

(Df)y = 0" (D)(fy),

where the suffix denotes restriction to h. In analogy with polar coordinates in euclidean
space, §'(D) is called the radial component of D. The map D — ¢'(D) is a homomor-
phism.

For D = 9(p), where p € I(g), the algebra of G-invariant polynomials on g, Harish-
Chandra computed its radial component. His result is the following beautiful theorem
[HC].

Theorem 4. For p € I(g),

§(0p) =7""to O(py)m.

Orbital integrals. For X € g, f € C*(g), define

_/Gf(X””)da: </Gda:_1).
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It is obvious that M f is G-invariant and that f — M f is a G-equivariant projection
operator from C*(g) onto I*°(g) := C*°(g)“. Harish-Chandra now defines a map f
by from C(g) to C*(b) by

04() = e(IM () = =(11) [ (117}
It is clear that ¢ is skew-symmetric with respect to W.

Theorem 5 (Limit formula). For f € C™(g),

(0(m)¢5)(0) = (m,m) £(0)-

Proof. We have

(@(m)¢7)(0) = (8(m) (7D £))(0) = (A(m) (m)(0)(M f)(0) = (7, 7) f(0). &

Lemma 6. If f is a smooth function on a connected open subset U C b, H' € §', and
Aq)f = q(H")f for all g € I = P(h)W, then there exist constants cs (s € W) such that

FUH) =" et ) (HeU).
seW

Proof. The elements sH’ are all distinct as H' € h’. Hence the exponentials e(HsH") are
linearly independent and satisfy the given differential equations. So the solution space
has dimension > |W|. We now argue that the dimension is < |W|. To establish this,
we need the result that P = P(f) is a free finite module over I of rank = |W/|. Let
u1, ..., u;w| be a module basis. Let f be a solution; since f is an eigenfunction of A,
where A is the Laplacian (certainly invariant with respect to W if the Laplacian is defined
using an orthonormal basis with respect to which W acts orthogonally), f is analytic.
If (9(u;)f)(Ho) = 0 for all j at some point Ho € U, then the relation P = 3, Iu;
implies that all derivatives of f vanish at Hp; hence f = 0 on U, by analyticity and
connectedness of U. So the map f — ((O(u;)f)i1<i<jw) of the solution space into CIWlis

injective, proving that its dimension is < |[W|, and is therefore spanned by the e 0.

O

Theorem 7. For H, H' € b,

W(H)W(H')/ D gy W ) 3 e(s)elHH),
G seWw

Proof. Here ( - ) is extended to a complex bilinear form on gc X go; e(s) = det(s) is
the homomorphism W — {£1} such that £(s,) = —1 for all roots a.
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It is sufficient to prove the theorem for H, H' € ', as both sides are holomorphic.
Let gi/(X) = ™). Then d(p)gn: = p(H')gw for p € P(g); it follows that for if
p € I(g), then 0(p)gf, = p(H')gy, for all x € G. Hence d(p)(Mgn) = p(H' )Mgn:.
Using radial components we find that

O(py)(m(Mgn)y) = py(H')(m(Mgn")y).
Since p > py is an isomorphism of I(g) with P(§)", we can use the lemma to write
n(H)gm (H) = > c.e ™10 (H € p),
seWw

where b is a connected component of h’. By analyticity, this holds on all of h. Since
Gp is W-invariant, the sum on the right is skew-symmetric and so ¢s = (s)c1, so that

n(H)gn (H) =~ Z e(s)eHHA),
seW
where ~ is a constant possibly depending on H'. Since (9()(mwgn+))(0) = (7, 7)gn (0) =

W]~ (m,m)

(m, ), we get v = | AR This proves the theorem. <

It is not difficult to see, from the formula defining ¢, that if f € S(g), then ¢y €
S(h); and that the map f +— ¢y is continuous from S(g) to S(h). Moreover, we can write
the integration formula as

[ 100X = ) [ wims ot
g ]

Theorem 8. Let Fourier transforms on both g and b be defined with respect to self-dual
measures. Then

r= i"oy.

Proof. By the previous theorem,

T (H)m(H') (Mg ) (H) = [W| ™ (m,7) Y e(s)eHH,
seWw

Now, for f € S(g),

iy ==t [ ( / ey )y
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Since Mg;y is bounded, the integrand is in the Schwartz space; hence we use the inte-
gration formula to get

o5 (H) = (m.m)"" /h O~ Hy ) (H ) (H ) (Mg (H) o .
On the other hand,

(il )m(Hy)(Mgim)(Hy) = W(iH)w(Hl)/ Gi(H™ H1) g

G
= |[W|~(m,7) Z g(s)etsH ),
seW
Therefore,
o) = W1 [ (3 e Yo (o
b seWw ’
:/¢?(H1)€i(H’Hl)d0H1'
b -
This means that .
br=1i"0y. o

Remark. Harish-Chandra’s formula in [HC] does not have the correct sign.
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