Collection of Errata, Clarifications, and Comments (updated Sep 1, 2003)

 COMPLEX DYNAMICS

 COMPLEX DYNAMICS
 by Lennart Carleson and Theodore W. Gamelin
 Springer-Verlag, Universitext series

Second printing: typos and minor changes
p.4, l.-10: Change " $f(\partial \Delta)$ " to " $\partial f(\Delta)$ "
p.4, l.-2: Change " are " to " is "
p.7, 1.3: Change " w_{n} " to " w_{0} "
pp.9-10: Change the first sentence in Section 3 to read: " It was P. Montel (1911) who first formulated the notion of a normal family of meromorphic functions and proved the criterion that bears his name. " Montel's original proof was based on Schottky's theorem, not on Picard's modular function.
p.13, 1.-4: Change" the the " to " the "
p.14, l.6: Change " 2.1 " to " 3.1 "
p.16, Fig.3: Add horizontal bars to the fractions $\frac{\pi}{2}$ and $\frac{\arg \mu(z)}{2}$
p.19, l.-7: Insert " has nonvanishing Jacobian " after " If $f \in Q C^{1}(k, R)$ "
p.20, l.-9: Change " $\left\|U_{\mu}\right\|$ " to " $\left\|U_{\mu}\right\|_{p}$ " (insert subscript p)
p.20, l.-7: Change " $\left|\left|\left(I-U_{\mu}\right)^{-1}\right|\right| "$ to " $\left|\mid\left(I-U_{\mu}\right)^{-1} \|_{p}\right.$ " (insert subscript p)
p.22, l.-5: Change " the smoothness of f " to " $f \in Q C^{1}(k, R)$ "
p.22, l.-2: Change " If f were C^{1} we would " to " If f were C^{1} and $f_{z} \neq 0$, we would "
p.30, l.-8: Change " due in this form " to " due essentially in this form "
p.33, l.-13: Change" For $|z|$ small there is " to " Choose"
p.33, l.-12: Change " $C|z|^{p}$. " to
" $C|z|^{p}$ for $|z| \leq 1 / C$. Then $|f(z)| \leq|z|$ for $|z| \leq 1 / C$."
p.33, l.-10: Change " δ " to " $1 / C$ "
p.33, lines 1 to 2: Delete " at the origin "
p.34, 1.7: Delete " $c<$ " so that it reads" $|z| \leq 1 / C$ "
p.36, l.-1: Change comma to period after the last estimate, and add the line:
" where the estimate is uniform for z belonging to a compact set."
p.39, 1.9: Change " to to " to " to "
p.41, l.-14: Change " let " to " suppose $z_{0}=0$ is a fixed point of $f(z)$, with multiplier "
p.71, l.-13: Change " inside " to " on the bounded components of "
p.71, l.-3: Change " $2 d-1$ " to " $2 d+1$ "
p.71, l.-2: Change " $2 d-1$ " to " $2 d+1$ "
p.74, l.-1: Change " an isometry " to " a local isometry"
p.75, 1.3: Change " an isometry" to " a local isometry"
p.75, 1.4: Change " $z, w \in U$. In particular for any" to " $z, w \in U, z \neq w$. Further, for any "
p.75, 1.18: Change " an isometry" to " a local isometry"
p. 75 , l.-5: Change " By an isometry, we mean at the local level, so that the lift " to" Since f is a local isometry, the lift "
p.76, 1.10: After the first sentence, insert " We claim that either (1) or (2) holds. For this, suppose that (2) fails. "
p.77, l.15: Change " (2) " to " (1)"
p.87, 1.2: Change " λ^{n-1} " to " λ^{n} "
p.91, l.14: Change " had been " to " is "
p.91, 1.15-16: Delete the sentence " Recently $\ldots z^{16}+c$. "
p.100, 1.3: Change " through " to " around "
p.101, 1.10: Change " conjugate to " to "conjugate on U_{1} to "
p.128, 1.15: Change " are dense in \mathcal{M} " to " are dense in $\partial \mathcal{M}$ "
p.149, format: Insert space at end of example, between lines -5 and -6
p.154, l.-2: Insert " $=f(z, c)$ " after " $P_{c}^{\ell}(z)$ "
p.157, format: Insert space at end of statement of theorem, between lines 16 and 17
p.173, Index: Change " repulsive cycle, ?? " to " repulsive cycle, 172 "
page 11, proof of Theorem I.3.2 (Montel's theorem)
The very last assertion of the proof requires justification. To do this, we follow the proof given, except that we take ψ to be the universal covering map of the upper half-plane \mathbf{H} over $\mathbb{C} \backslash\{0,1\}$ constructed in the proof of Theorem 3.1, with fundamental domain E from that proof, and we choose the lifts \tilde{f} of functions $f \in \mathcal{F}$ so that $\tilde{f}(0) \in E$. The functions \tilde{f} still form a normal family. Let $\left\{f_{n}\right\}$ be a sequence in \mathcal{F}. Passing to a subsequence, we can assume that \tilde{f}_{n} converges normally to g on \mathbf{H}. We must show that f_{n} converges normally. If $\tilde{f}_{n}(0)$ converges to a point of \mathbf{H}, then the image of g is in \mathbf{H}, and we can use the local inverses of ψ to see that f_{n} converges normally to the analytic function $\psi \circ g$. Our problem is to determine what happens when the limit of $\tilde{f}_{n}(0)$ does not belong to \mathbf{H}.

If the limit of $\tilde{f}_{n}(0)$ is not in \mathbf{H}, then since $\tilde{f}_{n}(0) \in E$, either $\operatorname{Re} \tilde{f}_{n}(0) \rightarrow+\infty$, or $\tilde{f}_{n}(0)$ converges to one of the corners 0 or 1 of ∂E. By composing the functions in the family \mathcal{F} with a fractional linear transformation that permutes the points $0,1, \infty$, we can assume that $\operatorname{Re} \tilde{f}_{n}(0) \rightarrow+\infty$. Then by Harnack's theorem, $\operatorname{Re} \tilde{f}_{n}(z) \rightarrow+\infty$ uniformly on compacta. Using the periodicity of ψ, we see that $|\psi(w)| \rightarrow \infty$ uniformly as $\operatorname{Re} w \rightarrow+\infty$. Hence $f_{n}=\psi \circ \tilde{f}_{n}$ converges to ∞ uniformly on compacta, and in particular it converges normally, as required.

A variant of the proof, which avoids Harnack's theorem, proceeds in outline as follows. Replacing the family of functions \mathcal{F} by the family of their square roots, one assumes that the family omits four points $\{-1,0,1, \infty\}$ in the extended plane. Then one proceeds as above, to the case where $\tilde{f}_{n}(0)$ converges to a vertex of E. In this case one considers the compositions $g_{n}=\varphi \circ f_{n}$, where φ is the fractional linear transformation that maps -1 to that vertex and leaves the other two vertices of E fixed. Now $\tilde{g}_{n}(0)=\varphi\left(\tilde{f}_{n}(0)\right)$ converges to a point of \mathbf{H}. We conclude as before that g_{n} converges normally, as does f_{n}.

page 55, proof of Theorem III.1. 1

Theorem 1.1 requires some justification to the effect that a neutral fixed point in the Fatou set belongs to a Siegel disk as defined. The following lemma clarifies the definition of a Siegel disk, and Theorem 1.1 follows immediately.
Lemma Let 0 be a neutral fixed point for a rational function R, with multiplier λ. If $0 \in \mathcal{F}$, and if U is the component of the Fatou set containing 0 , then Schröder's equation $\varphi(R(z))=$ $\lambda \varphi(z)$, with side conditions $\varphi(0)=0, \varphi^{\prime}(0)=1$, has a (unique) solution $\varphi(z)$ defined on U and mapping U conformally onto a disk.
Proof. We can assume that $\infty \in \mathcal{J}$. Note that $R(U) \subseteq U$. Since the iterates R^{n} form a normal family on U, they are uniformly bounded on compact subsets of U. As in the proof of Theorem II.6.2, the functions $\varphi_{n}(z)=(1 / n) \sum_{j=0}^{n-1} \lambda^{-j} R^{j}(z)$ are uniformly bounded on compact subsets of U, and any limit $\varphi(z)$ of the φ_{n} 's has the required properties.
page 77, proof of Lemma IV.2.3
To see that one of the alternatives $(1),(4)$, or (5) holds, proceed as follows.
Suppose that U is a punctured disk, say $U=\Delta \backslash\{0\}$, with covering map $\psi(\zeta)=e^{2 \pi i \zeta}$ from the upper half-plane \mathbf{H} to U. If f is a local hyperbolic isometry of U, and F is the lift of f to \mathbf{H}, then $F(\zeta+1) \equiv F(\zeta)$, so there is an integer m such that $F(\zeta+1)=F(\zeta)+m$. Thus F fixes ∞, and F is affine. Evidently $F(\zeta)=m \zeta+b$ where $m \geq 1$ and b is real. Thus $f(z)=e^{2 \pi i b} z^{m}$. If $m>1$, then (1) holds. If $m=1$, then since Γ is discrete, b is irrational, and (5) holds.

A similar argument shows that if U is an annulus, then (4) holds.
page 90 , proof of Theorem V.2.3
In this proof, the a and c do not come directly from the statement of Lemma 2.1. They come from an open neighborhood V of \mathcal{J}, as follows. Let V be an ε-neighborhood of \mathcal{J} with respect to the hyperbolic metric of $D=\overline{\mathbf{C}} \backslash C L$. Then $R^{-1}(V) \subset V$. For $\varepsilon>0$ small, there is $A>1$ such that (2.1) holds for $z \in V$. Set $c=1 / A$ and $a=(\sup \sigma) /(\inf \sigma)$, where the sup and the inf are taken over V. Then $\left|\left(R^{k}\right)^{\prime}(z)\right| \geq a / c^{k}$ for all $z \in V$ such that $R^{k}(z) \in V$, as in the proof of Lemma 2.1.
page 143, proof of Theorem VIII.5.2
There is a gap in the proof, which requires substantial work to fill. The problem is to show that if P_{a} has a parabolic cycle, then θ has odd denominator. The gap is filled, and in a more general setting, in the Doctoral Dissertation of Gustav Ryd, "Iterations of one parameter families of complex polynomials," Department of Mathematics, KTH, Stockholm (1997), ISBN 91-7170-210-5. The relevant statement is Proposition 5.8 , whose proof covers pages 38-43.

Ryd's thesis contains much more. In particular, it contains (Dissertation Section 3) theorems on the landing of external rays at parabolic and repelling periodic points of the Julia set of a rational function. It also carries out (Dissertation Section 7 and Theorem 8.1) the "main deformation construction" sketched at the end of Section VIII.7, again in a more general setting.

Ryd devotes special attention to one-parameter families of polynomials that have the form

$$
P_{c}(z)=z^{d}+\alpha_{d-1}(c) z^{d-1}+\ldots+\alpha_{0}(c), \quad P_{c}^{\prime}(z)=d \prod_{j=1}^{d-1}\left(z-p_{j}(c)\right)
$$

where $\alpha_{0}(c), \ldots, \alpha_{d-1}(c)$ and $p_{1}(c), \ldots, p_{d-1}(c)$ are polynomials in c. This includes such one-parameter families such as $z^{d}+c$, and more generally $p(z)+c$, where p is a polynomial. Thus each critical point has polynomial dependence on c, and one can define a "Mandelbrot set" \mathcal{M}_{j} for each critical point. Ryd investigates the behavior of P_{c} as $c \rightarrow a \in \mathcal{M}_{j}$.

