Homework 8 for Math 215A Commutative Algebra

Burt Totaro

Due: Wednesday, November 21, 2012

Rings are understood to be commutative, unless stated otherwise.

- (1) Let k be a field. Compute $\operatorname{Ext}_{k[x]/(x^2)}^i(k,k)$ for all i. Deduce that k does not have a finite projective resolution as a $k[x]/(x^2)$ -module. (First, say why there is only one way to view k as a $k[x]/(x^2)$ -module, compatibly with the obvious structure of k as a k-module.)
- (2) Let R be an algebra of finite type over a field k. Assume that R is a domain. Let M be a finitely generated module over R. Show that M is projective (or equivalently, flat or locally free) if and only if the R/\mathfrak{m} -vector spaces $M/\mathfrak{m}M$ all have the same dimension. (Hint: If these vector spaces have dimension n, construct a surjection $R_{\mathfrak{m}}^{\oplus n} \to M_{\mathfrak{m}}$ at any maximal ideal \mathfrak{m} . Show that this comes from a surjection $R[1/s]^{\oplus n} \to M[1/s]$ for some $s \in R \mathfrak{m}$. Show that any element of the kernel must be zero.)

As an application, show that the ring $k[x,y]/(x^2,xy)$ is finite but not flat over k[y].

- (3) Show that every finitely generated module M over a Dedekind domain R is the direct sum of a torsion module M_1 and a projective module M_2 . Give an example to show that such a splitting is not unique (in the sense that the submodules M_1 and M_2 of M are not uniquely determined).
- (4) Let A and B be algebras of finite type over a field k. Show that $\dim(A \otimes_k B) = \dim(A) + \dim(B)$.