Homework 2 for Math 215A Commutative Algebra

Burt Totaro

Due: Monday October 8, 2012

Rings are understood to be commutative, unless stated otherwise.

- (1) Let k be a field. Show how to view the ring $k[x,y]/(x-1,x^2+y^2-1)$ as the quotient ring of k[y] by a certain ideal. Deduce that the ideal $(x-1,x^2+y^2-1)$ is not prime, and compute its radical.
- (2) Let R be a domain. Show that the polynomial ring R[x] is a domain and that the group of units $R[x]^*$ is equal to R^* (viewed as constant polynomials). By induction on n, it follows that the polynomial ring $A = k[x_1, \ldots, x_n]$ over a field k is a domain, and that $A^* = k^*$. Show that the power series ring $B = k[[x_1, \ldots, x_n]]$ over a field is also a domain, and find the group of units B^* .
- (3) Let A and B be commutative rings. The product ring $A \times B$ (not to be confused with a tensor product) is the product set, with ring structure $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$ and $(a_1, b_1)(a_2, b_2) = (a_1a_2, b_1b_2)$. State and prove a universal property that characterizes $A \times B$ in the category of commutative rings. Show that $\operatorname{Spec}(A \times B)$ is the disjoint union of $\operatorname{Spec}(A)$ and $\operatorname{Spec}(B)$, as a set. (In fact it is the disjoint union as a topological space, but you need not prove that.)
- (4) Let k be a field. Show that a polynomial in $k[x_1, \ldots, x_n]$ of the form $x_n f(x_1, \ldots, x_{n-1})$ is irreducible over k. Show that a polynomial of the form $x_n^2 f(x_1, \ldots, x_{n-1})$ is irreducible over k if and only if f is not a square in $k[x_1, \ldots, x_{n-1}]$.