Homework 10 for Math 215A Commutative Algebra

Burt Totaro

Due: Wednesday, December 5, 2012

Rings are understood to be commutative, unless stated otherwise.

- (1) Let f be an irreducible polynomial over an algebraically closed field k. Let P be a closed point of the variety $X = \{f = 0\}$ in affine space A^n over k, and let \mathfrak{m} be the corresponding maximal ideal in $R = k[x_1, \ldots, x_n]/(f)$. Show that X is smooth at P if and only if $R_{\mathfrak{m}}$ is a regular local ring. (Start by showing that R has dimension n-1.)
- (2) Find all the closed points at which the 1-dimensional affine scheme $\{x^2 + y^2 + z^2 = 1, xz 2y + 2 = 0\}$ in $A_{\mathbf{C}}^3$ is not smooth over \mathbf{C} .
- (3) Let $f: X \to Y$ be a finite morphism of affine schemes. (That means that $X = \operatorname{Spec}(R)$ and $Y = \operatorname{Spec}(S)$ for some commutative rings R and S, f is the mapping associated to a ring homomorphism $S \to R$, and R is a finite S-algebra.) Show that the inverse image of each point in Y is a finite subset of X (that is, a finite morphism is quasi-finite). (Try to reduce the problem as much as possible, to the case where S is a domain or even a field.)

Show that the image of any closed subset of X is closed in Y (that is, a finite morphism is closed). Give an example of a morphism of affine schemes which is (a) quasi-finite but not closed; (b) closed but not quasi-finite.

- (4) (a) Let R be a ring. If $R_{\mathfrak{m}}$ is noetherian for every maximal ideal \mathfrak{m} in R and every nonzero element of R is contained in only finitely many maximal ideals, show that R is noetherian.
- (b) Let $A = \mathbf{C}[x_1, x_2, \ldots]$ be the polynomial ring on a countably infinite set of generators. Let m_1, m_2, \ldots be a strictly increasing sequence of positive integers such that the differences $m_2 m_1, m_3 m_2, \ldots$ are also strictly increasing. Let $\mathfrak{p}_i = (x_{m_i+1}, \ldots, x_{m_{i+1}})$ and let $S = A \bigcup_{i \geq 1} \mathfrak{p}_i$. Show that $R = A[S^{-1}]$ is a noetherian ring which does not have finite dimension. (Use (a).)