Homework 1 for Math 214B Algebraic Geometry

Burt Totaro

Spring 2018, UCLA

A variety over a field k means an integral separated scheme of finite type over k.

Due Monday, Apr. 16.

(1) Let k be a field. Decompose the scheme $X = \{(x, y, z) \in A_k^3 : x^2 = yz, xz = x\}$ into its irreducible components.

(2) Let k be a field. Let $f : A_k^1 \to A_k^1$ be an isomorphism of k-varieties. Prove that f is given by a polynomial of degree 1.

(3) Let k be a field. Show that the varieties A^1 and $A^1 - \{0\}$ are not isomorphic over k. Likewise for A^2 and $A^2 - \{0\}$, which is a bit different.

(4) Let $X = \{(x, y) \in A^2 : x^2 = y^3\}$ over a field k. Define a bijective morphism from A^1 to X over k. Show that this is not an isomorphism. In fact, show that A^1 and X are not isomorphic over k.

(5) Let k be an algebraically closed field of characteristic zero. Find the singular points of the affine curve $xy + x^3 + y^3 = 0$ over k.

(6) Show that the conic $xy = z^2$ in \mathbf{P}^2 over any field k is isomorphic to \mathbf{P}^1 . Show that every conic (irreducible curve of degree 2 in \mathbf{P}^2) over an algebraically closed field of characteristic not 2 can be moved to $xy = z^2$ by some automorphism of \mathbf{P}^2 .

(7) Linear subspaces of \mathbf{P}^n . Let k be a field. A hypersurface in \mathbf{P}^n over k of degree 1 (that is, defined by a homogeneous polynomial of degree 1) is called a hyperplane. A nonempty intersection of hyperplanes is called a *linear subspace* of \mathbf{P}^n .

(a) If Y is a linear subspace of dimension r in \mathbf{P}^n , show that Y is isomorphic to \mathbf{P}^r .

(b) Let Y, Z be linear subspaces of dimension r and s in \mathbf{P}^n . If $r + s - n \ge 0$, then $Y \cap Z \neq \emptyset$. Moreover, $Y \cap Z$ is a linear subspace of dimension at least r + s - nin \mathbf{P}^n . (Think of $A^{n+1}(k)$ as a vector space over k, and work with its subspaces.)

(8) The Veronese embedding. Let k be a field. For a given n, d > 0, let M_0, \ldots, M_N be all the monomials of degree d in the n + 1 variables x_0, \ldots, x_n , where $N = \binom{n+d}{d} - 1$. We define a morphism $\rho_d : \mathbf{P}^n \to \mathbf{P}^N$ over k by sending a

point $P = [a_0, \ldots, a_n]$ to the point $[M_0(a), \ldots, M_N(a)]$ obtained by substituting the numbers a_i in the monomials M_j . This is called the *d*th Veronese embedding, or the *d*-uple embedding, of \mathbf{P}^n in \mathbf{P}^N . For example, when n = 1 and d = 2, this is the embedding of \mathbf{P}^1 in \mathbf{P}^2 as a conic.

(a) Show that the *d*th Veronese map of \mathbf{P}^1 , $\rho_d : [u, v] \mapsto [u^d, u^{d-1}v, \ldots, v^d]$, is a morphism from \mathbf{P}^1 to \mathbf{P}^d . Show that the image is closed in \mathbf{P}^d . Show that ρ_d is an isomorphism from \mathbf{P}^1 to this closed subset, called a *rational normal curve* in \mathbf{P}^d . (These results hold for the Veronese embeddings of \mathbf{P}^n for any *n*, but it takes longer to write out the proofs in general.)

(b) Show that the rational normal curve in \mathbf{P}^3 (called the *twisted cubic curve*) is the projective closure of the affine curve $\{(t, t^2, t^3)\} \subset A^3$, in some coordinates.