Homework 3 for Math 214B Algebraic Geometry

Burt Totaro

Spring 2016, UCLA

Due on Friday, May 27.
In the following problems, varieties are over an algebraically closed field k, unless stated otherwise. A "curve of genus g " is usually understood to be smooth and projective over k.
(1) Show that any curve X of genus 1 can be written as a degree- 2 ramified covering of \mathbf{P}^{1} (meaning that there is a morphism $X \rightarrow \mathbf{P}^{1}$ of degree 2).
(2) For an effective divisor D on a curve X of genus g, show that $h^{0}(X, O(D)) \leq$ $\operatorname{deg}(D)+1$. Show that equality holds if and only if $D=0$ or $g=0$.
(3) Let X be a smooth projective curve, p a point in X. Show that there is a nonconstant rational function on X which is regular outside p. Deduce that $X-p$ is affine.
(4) A curve X is called hyperelliptic if it has genus $g \geq 2$ and there is a morphism $X \rightarrow \mathbf{P}^{1}$ of degree 2.
(a) If X is a curve of genus 2 , show that the canonical bundle K_{X} defines a morphism $X \rightarrow \mathbf{P}^{1}$ of degree 2 . Thus every curve of genus 2 is hyperelliptic.
(b) For $g(X) \geq 2$, show that the canonical bundle K_{X} defines a morphism $X \rightarrow \mathbf{P}^{g-1}$. (The main point here is to check that K_{X} is basepoint-free.) If X is not hyperelliptic, show that the canonical bundle defines an embedding of X in \mathbf{P}^{g-1}, the canonical embedding.
(c) Compute the genus of a smooth plane quartic curve X ("quartic" means degree 4), by describing the canonical bundle of X. Show that X is not hyperelliptic. (You may use that if a curve X of any genus $g \geq 2$ is hyperelliptic, then the canonical $\operatorname{map} X \rightarrow \mathbf{P}^{g-1}$ is a double cover of its image, which is a rational normal curve.)
(5) Show that any elliptic curve X can be embedded as a smooth curve of degree d in \mathbf{P}^{d-1} for any $d \geq 3$. Show that a transverse intersection of two smooth quadrics in \mathbf{P}^{3} is indeed an elliptic curve of degree 4 . But show that an elliptic curve of degree d in \mathbf{P}^{d-1} is not a complete intersection for $d \geq 5$. (Hint: from Homework 2 , you know the canonical bundle of any smooth complete intersection curve in any \mathbf{P}^{n}.)
(6) For any smooth hypersurface X in \mathbf{P}^{n+1} over a field $k, n \geq 1$, determine the canonical bundle K_{X} (as the restriction of a line bundle on projective space). Compute $H^{0}\left(X, K_{X}\right)$. Deduce that a smooth surface of degree at least 4 in \mathbf{P}^{3} is not rational. Can a singular surface of degree at least 4 in \mathbf{P}^{3} be rational?

