Homework 2 for Math 214B Algebraic Geometry

Burt Totaro

Spring 2016, UCLA

Due on Friday, May 6.
(1) For a hypersurface X of degree d in \mathbf{P}^{n+1} over a field $k, n \geq 1$, compute the Hilbert series of the graded ring $\oplus_{j} H^{0}(X, O(j))$.
(2) Let X be a hypersurface of degree d in projective space \mathbf{P}^{n+1} over a field k. Compute the cohomology groups $H^{i}\left(X, O_{X}\right)$ for all i. Deduce that X is not isomorphic to \mathbf{P}^{n} for d large enough; what range of d do you get?
(3) Let X be the affine line over a field k. We know that $H^{i}(X, E)=0$ for every quasi-coherent sheaf E on X (or any affine scheme) and every $i>0$. Does this vanishing hold for every sheaf of O_{X}-modules, not necessarily quasi-coherent?
(4) Let $U=A^{2}-0$ over a field k. Using a suitable cover of U by affine open subsets, show that $H^{1}(U, O)$ is isomorphic to the k-vector space with basis $\left\{x^{i} y^{j}\right.$: $i, j<0\}$. In particular, it is a k-vector space of infinite dimension. Use this calculation to show that the scheme U is not affine.
(5) Let X be a noetherian separated scheme. Define the cohomological dimension of X, denoted $\operatorname{cd}(X)$, to be the least integer n such that $H^{i}(X, F)=0$ for all quasi-coherent sheaves F and all $i>n$. For example, Serre's Theorem III.3.7 in Hartshorne says that $\operatorname{cd}(X)=0$ if and only if X is affine. Grothendieck's Theorem III.2.7 implies that $\operatorname{cd}(X) \leq \operatorname{dim}(X)$.
(a) In the definition of $\operatorname{cd}(X)$, show that it is sufficient to consider only coherent sheaves on X. Use exercise II.5.15 and Prop. III.2.9.
(b) If X is quasi-projective over a field k, then it is even sufficient to consider vector bundles on X. Use Cor. II.5.18.
(c) Suppose that X has a covering by $r+1$ open affine subsets. Use Cech cohomology to show that $\operatorname{cd}(X) \leq r$.
(d) If X is quasi-projective scheme of dimension r over a field k, show that X can be covered by $r+1$ open affine subsets. Conclude (independent of Grothendieck's theorem) that $\operatorname{cd}(X) \leq \operatorname{dim}(X)$.
(e) Let Y be a set-theoretic complete intersection (exercise I.2.17) of codimension r in $X=A_{k}^{n}$. Show that $\operatorname{cd}(X-Y) \leq r-1$.
(6) Let $X=\operatorname{Spec} k\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ be affine 4 -space over a field k. Let Y_{1} be the plane $x_{1}=x_{2}=0$ and let Y_{2} be the plane $x_{3}=x_{4}=0$. Show that $Y=Y_{1} \cup Y_{2}$
is not a set-theoretic complete intersection in X. Therefore the projective closure $\bar{Y} \subset \mathbf{P}_{k}^{4}$ is also not a set-theoretic complete intersection. [Hint: Use problem 5(e) above. Then show that $H^{2}\left(X-Y, O_{X}\right) \neq 0$, by using exercises III.2.3 (cohomology with support) and III.2.4 (Mayer-Vietoris).]

