Homework 1 for Math 214B Algebraic Geometry

Burt Totaro

Spring 2016, UCLA

Due on Friday, April 22.
(1) Let X be a projective variety over an algebraically closed field k, L a line bundle on X. If L and L^{*} are both effective (that is, their spaces of sections are nonzero), show that L is trivial.
(2) A divisor with simple normal crossings (snc) on a regular scheme X means a union of regular irreducible divisors D_{1}, \ldots, D_{r} in X which all intersect transversely. (Equivalently, for any s, the scheme-theoretic intersection of any s of the divisors is regular of codimension s in X, or else empty.)

Let C be the cuspidal cubic curve $x^{2}=y^{3}$ in the smooth surface $X=A_{\mathbf{C}}^{2}$. By repeatedly blowing up points, construct a smooth surface W over \mathbf{C} with a proper birational morphism $f: W \rightarrow X$ such that the closed subset $f^{-1}(C)$ is an snc divisor. Draw a picture of the inverse image of C at each stage of your blow-up (making sure to distinguish transverse from non-transverse intersections).
(3) A resolution of singularities of an integral scheme X means a regular integral scheme W with a proper birational morphism $W \rightarrow X$. If X is the affine cone over a smooth projective variety Y over a field k, then W can be produced by one blow-up at a point; the exceptional divisor is then $\cong Y$. For example, resolve the singularities of the affine quadric cone $x y=z^{2}$ in $A_{\mathbf{C}}^{3}$, and draw the exceptional divisor.

For a more interesting example, resolve the singularities of the surface singularity $x y=z^{3}$ over \mathbf{C}, by blowing up points as needed. Again, draw the exceptional divisor of your resolution.
(3) Let k be a field. Classify all varieties over k which are both affine and projective over k.
(4) Let X be a smooth complete intersection in \mathbf{P}^{n} over a field k. (That is, X is a smooth subscheme of some dimension r in \mathbf{P}^{n}, and X is an intersection $X=Z_{1} \cap \cdots \cap Z_{n-r}$ of hypersurfaces as a scheme. If necessary, assume that Z_{1}, \ldots, Z_{n-r} are smooth. Note that in any case we know that Z_{1}, \ldots, Z_{n-r} are smooth and transverse near X, and ideally you could try to use only that.)

Compute the canonical bundle of any smooth complete intersection curve in any \mathbf{P}^{n}, using the adjunction formula. You can assume that the hypersurfaces all have degree at least 2 , since a hypersurface of degree 1 is just a hyperplane $\mathbf{P}^{n-1} \subset \mathbf{P}^{n}$. You can use your formula in various ways. For example, show that there are only
finitely many multidegrees of smooth complete intersections of a given dimension r that are Fano (that is, $-K_{X}$ ample), and list them all for X of dimension at most 3.
(5) Let k be an algebraically closed field of characteristic $p>0$. Show that the morphism $f: A_{k}^{1} \rightarrow A_{k}^{1}$ defined by $x \mapsto x^{p}$ is a bijective morphism but not an isomorphism. Where is the derivative of f zero? Is $f: A^{1} \rightarrow A^{1}$ birational?
(6) Define the support of a coherent sheaf F on a scheme X to be the intersection of all closed subsets $S \subset X$ such that $\left.F\right|_{X-S}=0$. Show that $\operatorname{supp}(F)$ is itself a closed subset such that $\left.F\right|_{X-\operatorname{supp}(F)}=0$. Show that for X affine, $\operatorname{supp}(F)$ is the closed subset of X corresponding to an ideal in $O(X)$, namely the annihilator of the $O(X)$-module of sections $F(X)$:
ann $H^{0}(X, F)=\left\{f \in O(X): f s=0 \in H^{0}(X, F)\right.$ for all global sections $\left.s \in F(X)\right\}$.
This is sometimes a useful way to check that two sheaves F_{1}, F_{2} on X are not isomorphic: if they have different supports in X, they are not isomorphic.

