Homework 3 for Math 214B Algebraic Geometry

Burt Totaro

Spring 2014, UCLA

Due on Monday, June 2.

In the following problems, varieties are over an algebraically closed field k, unless stated otherwise. A "curve of genus g" is usually understood to be smooth and projective over k.

- (1) Let k be an algebraically closed field of characteristic p>0. Show that the morphism $f:A^1_k\to A^1_k$ defined by $x\mapsto x^p$ is a bijective morphism but not an isomorphism. Where is the derivative of f zero? Is $f:A^1\to A^1$ birational?
 - (2) Show that any curve of genus zero is isomorphic to \mathbf{P}^1 .
- (3) Show that any curve X of genus 1 can be written as a degree-2 ramified covering of \mathbf{P}^1 (meaning that there is a morphism $X \to \mathbf{P}^1$ of degree 2). Curves of genus 1 are called elliptic curves. Show that an elliptic curve is not rational (that is, it is not birational to \mathbf{P}^1).
- (4) For an effective divisor D on a curve X of genus g, show that $h^0(X, O(D)) \le \deg(D) + 1$. Show that equality holds if and only if D = 0 or g = 0.
- (5) Let X be a smooth projective curve, p a point in X. Show that there is a nonconstant rational function on X which is regular outside p.
- (6) A curve X is called *hyperelliptic* if it has genus $g \ge 2$ and there is a morphism $X \to \mathbf{P}^1$ of degree 2.
- (a) If X is a curve of genus 2, show that the canonical bundle K_X defines a morphism $X \to \mathbf{P}^1$ of degree 2. Thus every curve of genus 2 is hyperelliptic.
- (b) For $g(X) \geq 2$, show that the canonical bundle K_X defines a morphism $X \to \mathbf{P}^{g-1}$. (The main point here is to check that K_X is basepoint-free.) If X is not hyperelliptic, show that the canonical bundle defines an embedding of X in \mathbf{P}^{g-1} , the canonical embedding.
- (c) Compute the genus of a smooth plane quartic curve X ("quartic" means degree 4), by describing the canonical bundle of X. Show that X is not hyperelliptic. (You may use that if a curve X of any genus $g \geq 2$ is hyperelliptic, then the canonical map $X \to \mathbf{P}^{g-1}$ is a double cover of its image, which is a rational normal curve.)
- (7) Show that any elliptic curve X can be embedded as a smooth curve of degree d in \mathbf{P}^{d-1} for any $d \geq 3$. Show that a transverse intersection of two smooth quadrics in \mathbf{P}^3 is indeed an elliptic curve of degree d. But show that an elliptic curve of degree d in \mathbf{P}^{d-1} is not a complete intersection for $d \geq 5$. (Hint: from Homework 2, you know the canonical bundle of any smooth complete intersection curve in any \mathbf{P}^n .)