Homework 1 for Math 214A Algebraic Geometry

Burt Totaro

January 6, 2020

Due Wednesday, Jan. 22. Varieties are over an algebraically closed field k, unless stated otherwise.
(1) Let X be the closed algebraic subset of the affine plane A^{2} over k defined by $x^{2}+y^{2}=1$ and $x=1$. What is the ideal $I(X)$ in $k[x, y]$ of functions vanishing on X ?
(2) Let X be the closed subset of A^{3} over k defined by $x^{2}+y^{2}+z^{2}=0$. Determine the ideal $I(X)$ when the characteristic of k is 2 . Determine $I(X)$ when the characteristic of k is not 2 .
(3) Let X be an affine algebraic set and $X=\bigcup U_{\alpha}$ a cover of X by open subsets U_{α}. Prove that X is the union of finitely many of the subsets U_{α}.
(4) Every affine algebraic set X is the union of finitely many varieties; that is, $X=X_{1} \cup X_{2} \cup \cdots \cup X_{m}$ where X_{i} are irreducible closed subsets of X. If X_{i} is not contained in X_{j} for any $i \neq j$, we call X_{i} the irreducible components of X. Now decompose $X=\left\{(x, y, z) \in A^{3}: x^{2}=y z, x z=x\right\}$ into its irreducible components.
(5) Let $f: A_{k}^{1} \rightarrow A_{k}^{1}$ be an isomorphism. Prove that f is given by a linear polynomial.
(6) Show that the varieties A^{1} and $A^{1}-\{0\}$ are not isomorphic. Likewise for A^{2} and $A^{2}-\{0\}$, which is a bit different.
(7) Let $X=\left\{(x, y) \in A^{2}: x^{2}=y^{3}\right\}$. Define a bijective morphism from A^{1} to X. Show that this is not an isomorphism. In fact, show that A^{1} and X are not isomorphic.
(8) Let k be an algebraically closed field of characteristic zero. Find the singular points of the affine curve $x y+x^{3}+y^{3}=0$ over k.

