Homework 7 for Math 131BH Honors Analysis

Burt Totaro

Winter 2017, UCLA

Due on Tuesday, March 14.

Rudin, p. 239: 16, 17, 21, 23.

(1) Compute the derivative of $\arctan(x)$ for $x \in \mathbf{R}$. Use that $\operatorname{calculation}$ to show that $\arctan(x)$ is an analytic function, equal on (-1, 1) to a power series around x = 0. Compute the power series.

Use Abel's theorem (Theorem 8.2 in Rudin) to show that $\arctan(x)$ is also equal to the sum of the series when x = 1. Does that hold when x = -1? Using the result for x = 1, give an explicit formula for π as an infinite series.