Homework 6 for Math 131BH Honors Analysis

Burt Totaro
Winter 2017, UCLA

Due on Tuesday, March 7.
Rudin, p. 239: 7, 8, 9, 13, 14.
(1) Let $f(x)=x$ for $x \in[-\pi, \pi]$. Compute the Fourier series of f. (If you encounter numbers like $e^{n \pi i}$ or $\cos (n \pi)$ for an integer n, please write them in simpler terms. Also, make sure that your formulas do not involve dividing by 0 .)

Show that the Fourier series of f converges (to some value) at every real number x. (Hint: You can use the theorem we proved on pointwise convergence of Fourier series if $x \in(\pi, \pi)$, but that result does not apply if $x=\pi$; why not? So you have to check convergence by hand if $x=\pi$.) Graph the sum of the Fourier series, as a periodic function on \mathbf{R}. At which real numbers x does the series converge absolutely?

By evaluating the Fourier series of f at $x=\pi / 2$, find an explicit formula for π as an infinite series.

